Effects of Different Metal-Molecule Interface Conformations on the Electronic Transport in Molecular Junctions

Article Preview

Abstract:

Based on nonequilibrium Green’s function and first-principles calculation, we investigate the electronic transport of borazine molecule with different metal-molecule interface conformations, namely bridge and top site. The motivation is the variable situations that may arise in break junction experiments. Numerical results show that the current will be increased with the different adsorption sites; especially the enhancement of current is more obvious when molecule is located at the bridge site. Furthermore, a negative differential resistance under applied bias can be observed when the molecule is located at the top site. The mechanism of negative differential resistance is mainly induced by the resonance peak around the Fermi energy in top adsorption site.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 663-665)

Pages:

588-591

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.R. Heath and M.A. Ratner: Phys. Today Vol. 56 (2003), p.43.

Google Scholar

[2] A. Halbritter, S. Csonka, G. Mihaly, E. Jurdik, O. Y. Kolesnychenko, O. I. Shklyarevskii, S. Speller, and H. van Kempen: Phys. Rev. B Vol. 68 (2003), p.035417.

DOI: 10.1103/physrevb.68.035417

Google Scholar

[3] M. A. Reed, C. Zhou, C.J. Muller, T.P. Burgin and J.M. Tour: Science Vol. 278 (1997), p.252.

Google Scholar

[4] R.H.M. Smit, Y. Noat, C. Untiedt, N.D. Lang, M.C. van Hemert, and J.M. van Ruitenbeek: Nature (London) Vol. 419 (2002), p.906.

DOI: 10.1038/nature01103

Google Scholar

[5] A.N. Pasupathy, R.C. Bialczak, J. Martinek, L.A.K. Donev, P.L. McEuen and D.C. Ralph: Science Vol. 306 (2004), p.86.

DOI: 10.1126/science.1102068

Google Scholar

[6] Y. Girard, M. Kondo and K. Yoshizawa: Chem. Phys. Vol. 327 (2006), p.77.

Google Scholar

[7] X.Q. Shi, X.H. Zheng Z.X. Dai,Y. Wang, and Z. Zeng: J. Phys. Chem. B Vol. 109 (2005), p.3334.

Google Scholar

[8] M. Kondo, T. Tada and K. Yoshizawa: J. Phys. Chem. A Vol. 108 (2004), p.9143.

Google Scholar

[9] P. Pati and S. P. Karna: Phys. Rev. B Vol. 69 (2004) p.155419.

Google Scholar

[10] G. Emberly and G. Kirczenow: Phys. Rev. Lett. Vol. 91 (2003), p.188301.

Google Scholar

[11] J. Chen, C. Nuckolls, T. Roberts, J. E. Klare and S. Lindsay: NanoLett. Vol. 5 (2005), p.503.

Google Scholar

[12] M. Irie: Chem. Rev. Vol. 100 (2000), p.1685.

Google Scholar

[13] D. Dulic, G. Speyer and O.F. Sankey: Phys. Rev. Lett. Vol. 91 (2003), p.207402.

Google Scholar

[14] C. Zhang, M.H. Du, H.P. Cheng, A.E. Roitberg and J.L. Krause: Phys. Rev. Lett. Vol. 92(2006) p.158301.

Google Scholar

[15] X. Q. Shi, X. H. Zheng, Z. X. Dai, Y. Wang and Z. Zeng: J. Phys. Chem. B Vol. 109 (2005), p.3334.

Google Scholar

[16] M. Brandbyge, J. -L. Mozos, P. Ordejo'n, J. Taylor and K. Stokbro: Phys. Rev. B Vol. 65 (2002), p.165401.

Google Scholar

[17] Z. H. Zhang, Z. Yang, J. H. Yuan and X. Q. Deng: J. Chem. Phys. Vol. 129 (2008), p.094702.

Google Scholar

[18] Z. H. Zhang, Q. Z. Yang, J. H. Yuan and M. Qiu: Chin. Sci. Bull. Vol. 52(2007), p.10.

Google Scholar