[1]
Humphreys F. J., Hatherly M. Recrystallization and Related Annealing Phenomena. Oxford: Pergamon Press, (1996).
Google Scholar
[2]
Doherty R. D., Hughes D. A., Humphreys F. J., et al. Current issues in recrystallization: a review. Materials Science and Engineering A Vol. 238 (1997) pp.219-274.
Google Scholar
[3]
Jeon M. S., Yoon W. S. Appl Surf lett., 2000: 8.
Google Scholar
[4]
Yamashita A., Horita Z., Langdon T. G. Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation. Materials Science and Engineering A, 2001: 142-147. Vol. 300.
DOI: 10.1016/s0921-5093(00)01660-9
Google Scholar
[5]
Guo W. Y., Sun J., Wu J. S. Effect of deformation on corrosion behavior of Ti-23Nb-0. 7Ta-2Zr-O alloy. Materials Characterization, 2009: 173-177. Vol. 60.
DOI: 10.1016/j.matchar.2008.08.006
Google Scholar
[6]
Elayaperumal K., De P. K., Balachandra J. PASSIVITY OF TYPE 304 STAINLESS STEEL-EFFECT OF PLASTIC DEFORMATION. Corrosion, 1972: 269-273. Vol. 28.
DOI: 10.5006/0010-9312-28.7.269
Google Scholar
[7]
Salvago G., Fumagalli G., Sinigaglia D. The corrosion behavior of AISI 304L stainless steel in 0. 1 M HCl at room temperature-II. The effect of cold working. Corrosion Science, 1983: 515-523. Vol. 23.
DOI: 10.1016/0010-938x(83)90101-4
Google Scholar
[8]
Baranov D. A., Lunichkina M. A., Nesterova A. I. The effect of rolling on the corrosion resistance of high-strength cast iron. Zashchita Metallov, 2003: 420-423. Vol. 39.
Google Scholar
[9]
Baranov D. A., Leirikh I. V., Myznikova E. S. Corrosion resistance of strained, high-strength cast iron in aqueous media. Protection of Metals, 2004: 254-256. Vol. 40.
DOI: 10.1023/b:prom.0000028918.77543.5b
Google Scholar
[10]
Rofagha R., Erb U., Ostander D., et al. Nanostruct Mater, Vol. 2 (1993) pp.1-10.
Google Scholar
[11]
Vinogradov A., Mimaki T., Hashimoto S., et al. On the corrosion behaviour of ultra-fine grain copper. Scripta Materialia, 1999: 319-326. Vol. 41.
DOI: 10.1016/s1359-6462(99)00170-0
Google Scholar
[12]
Chung M. -K., Choi Y. -S., Kim J. -G., et al. Effect of the number of ECAP pass time on the electrochemical properties of 1050 Al alloys. Materials Science and Engineering A, 2004: 282-291. Vol. 366.
DOI: 10.1016/j.msea.2003.08.056
Google Scholar
[13]
Balyanov A., Kutnyakova J., Amirkhanova N. A., et al. Corrosion resistance of ultra fine-grained Ti. Scripta Materialia, 2004: 225-229. Vol. 5.
DOI: 10.1016/j.scriptamat.2004.04.011
Google Scholar
[14]
Hoseini M., Shahryari A., Omanovic S., et al. Comparative effect of grain size and texture on the corrosion behaviour of commercially pure titanium processed by equal channel angular pressing. Corrosion Science, 2009: 3064-3067. Vol. 51.
DOI: 10.1016/j.corsci.2009.08.017
Google Scholar
[15]
Fan Z., Jiang H., Sun X., et al. Microstructures and mechanical deformation behaviors of ultrafine-grained commercial pure (grade 3) Ti processed by two-step severe plastic deformation. Materials Science and Engineering: A, 2009: 45-51. Vol. 527.
DOI: 10.1016/j.msea.2009.07.030
Google Scholar
[16]
Shahryari A., Szpunar J. A., Omanovic S. The influence of crystallographic orientation distribution on 316LVM stainless steel pitting behavior. Corrosion Science, 2009: 677-682. Vol. 51.
DOI: 10.1016/j.corsci.2008.12.019
Google Scholar
[17]
Jiang H., Xie C., Song J., et al. Texture evolution of commercial pure (grade 3) Ti during equal channel angular extrusion, (submitted).
Google Scholar
[18]
Scully J. C. The Fundamentals of Corrosion 3rd edition. New York: Pergamon Pr, (1990).
Google Scholar
[19]
J. O'M. Bockris, S.U.M. Khan, Surface Electrochemistry: A Molecular Level Approach. New York: Plenum Press, (1993).
Google Scholar
[20]
Jones D. Principals and prevention of corrosion. 2nd ed. . Upper Saddle River, NJ, US: Prentice-Hall, Inc., (1992).
Google Scholar
[21]
Movchan B. Jakupolska LN. Prot Met 1969: 511. Vol. 5.
Google Scholar
[22]
H.A. Johansen, G.B. Adams Jr, P.V. Rysselberghe. J Electrochem Soc, Vol. 104 (1957) pp.339-346.
Google Scholar