Electrochemical Properties of UFG CP-Ti in Ringer’s Solution

Article Preview

Abstract:

The effect of ECAE pass number on the electrochemical properties of CP-Ti was investigated by electrochemical techniques (potentiodynamic polarization test, potentiodynamic polarization test and surface analyses (OM, scanning electron microscopy (SEM) in Ringer’s solution at 37°C. The results show that the corrosion resistance of muli-pass ECAE CP-Ti samples is superior to the coarse grain CP-Ti. The effect of texture of ECAEed samples parallel to the surface on the corrosion properties has been discussed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 667-669)

Pages:

1083-1088

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Humphreys F. J., Hatherly M. Recrystallization and Related Annealing Phenomena. Oxford: Pergamon Press, (1996).

Google Scholar

[2] Doherty R. D., Hughes D. A., Humphreys F. J., et al. Current issues in recrystallization: a review. Materials Science and Engineering A Vol. 238 (1997) pp.219-274.

Google Scholar

[3] Jeon M. S., Yoon W. S. Appl Surf lett., 2000: 8.

Google Scholar

[4] Yamashita A., Horita Z., Langdon T. G. Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation. Materials Science and Engineering A, 2001: 142-147. Vol. 300.

DOI: 10.1016/s0921-5093(00)01660-9

Google Scholar

[5] Guo W. Y., Sun J., Wu J. S. Effect of deformation on corrosion behavior of Ti-23Nb-0. 7Ta-2Zr-O alloy. Materials Characterization, 2009: 173-177. Vol. 60.

DOI: 10.1016/j.matchar.2008.08.006

Google Scholar

[6] Elayaperumal K., De P. K., Balachandra J. PASSIVITY OF TYPE 304 STAINLESS STEEL-EFFECT OF PLASTIC DEFORMATION. Corrosion, 1972: 269-273. Vol. 28.

DOI: 10.5006/0010-9312-28.7.269

Google Scholar

[7] Salvago G., Fumagalli G., Sinigaglia D. The corrosion behavior of AISI 304L stainless steel in 0. 1 M HCl at room temperature-II. The effect of cold working. Corrosion Science, 1983: 515-523. Vol. 23.

DOI: 10.1016/0010-938x(83)90101-4

Google Scholar

[8] Baranov D. A., Lunichkina M. A., Nesterova A. I. The effect of rolling on the corrosion resistance of high-strength cast iron. Zashchita Metallov, 2003: 420-423. Vol. 39.

Google Scholar

[9] Baranov D. A., Leirikh I. V., Myznikova E. S. Corrosion resistance of strained, high-strength cast iron in aqueous media. Protection of Metals, 2004: 254-256. Vol. 40.

DOI: 10.1023/b:prom.0000028918.77543.5b

Google Scholar

[10] Rofagha R., Erb U., Ostander D., et al. Nanostruct Mater, Vol. 2 (1993) pp.1-10.

Google Scholar

[11] Vinogradov A., Mimaki T., Hashimoto S., et al. On the corrosion behaviour of ultra-fine grain copper. Scripta Materialia, 1999: 319-326. Vol. 41.

DOI: 10.1016/s1359-6462(99)00170-0

Google Scholar

[12] Chung M. -K., Choi Y. -S., Kim J. -G., et al. Effect of the number of ECAP pass time on the electrochemical properties of 1050 Al alloys. Materials Science and Engineering A, 2004: 282-291. Vol. 366.

DOI: 10.1016/j.msea.2003.08.056

Google Scholar

[13] Balyanov A., Kutnyakova J., Amirkhanova N. A., et al. Corrosion resistance of ultra fine-grained Ti. Scripta Materialia, 2004: 225-229. Vol. 5.

DOI: 10.1016/j.scriptamat.2004.04.011

Google Scholar

[14] Hoseini M., Shahryari A., Omanovic S., et al. Comparative effect of grain size and texture on the corrosion behaviour of commercially pure titanium processed by equal channel angular pressing. Corrosion Science, 2009: 3064-3067. Vol. 51.

DOI: 10.1016/j.corsci.2009.08.017

Google Scholar

[15] Fan Z., Jiang H., Sun X., et al. Microstructures and mechanical deformation behaviors of ultrafine-grained commercial pure (grade 3) Ti processed by two-step severe plastic deformation. Materials Science and Engineering: A, 2009: 45-51. Vol. 527.

DOI: 10.1016/j.msea.2009.07.030

Google Scholar

[16] Shahryari A., Szpunar J. A., Omanovic S. The influence of crystallographic orientation distribution on 316LVM stainless steel pitting behavior. Corrosion Science, 2009: 677-682. Vol. 51.

DOI: 10.1016/j.corsci.2008.12.019

Google Scholar

[17] Jiang H., Xie C., Song J., et al. Texture evolution of commercial pure (grade 3) Ti during equal channel angular extrusion, (submitted).

Google Scholar

[18] Scully J. C. The Fundamentals of Corrosion 3rd edition. New York: Pergamon Pr, (1990).

Google Scholar

[19] J. O'M. Bockris, S.U.M. Khan, Surface Electrochemistry: A Molecular Level Approach. New York: Plenum Press, (1993).

Google Scholar

[20] Jones D. Principals and prevention of corrosion. 2nd ed. . Upper Saddle River, NJ, US: Prentice-Hall, Inc., (1992).

Google Scholar

[21] Movchan B. Jakupolska LN. Prot Met 1969: 511. Vol. 5.

Google Scholar

[22] H.A. Johansen, G.B. Adams Jr, P.V. Rysselberghe. J Electrochem Soc, Vol. 104 (1957) pp.339-346.

Google Scholar