Impact of Ball Milling and High-Pressure Torsion on the Microstructure and Thermoelectric Properties of p- and n-Type Sb-Based Skutterudites

Article Preview

Abstract:

For thermoelectrics it is important to produce thermodynamically stable bulk nanostructured materials. Ball milling/hot pressing was shown to reduce the crystallite size by a factor of 100 and to reach about 100 nm with dislocation densities of 1012 – 1013m-2. Thereby thermoelectric properties of single, double and multifilled Sb-based skutterudites were improved significantly leading to figures of merit ZT, which in some cases are twice as high as those of their microstructured counterparts. With HPT treatment the crystallite size can be decreased to even 50 nm with dislocation densities as high as 1015m-2. The small grains as well as the high dislocation density result in a further lowering of thermal conductivity holding a high potential for future enhancement of ZT.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 667-669)

Pages:

1089-1094

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.S. Nolas, J. Sharp and H. Goldsmith, Thermoelectrics: Basic Principles and New Materials Developments, Springer, New York (2001).

Google Scholar

[2] T. M. Tritt and M. A. Subramanian, MRS Bull. 31 (2006) 188 and references therein.

Google Scholar

[3] G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.P. Fleurial, T. Caillat, Int. Mater. Rev. 48 (2003) 45.

Google Scholar

[4] M. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, P. Gogna, Adv. Mater. 19 (2007) 1043.

Google Scholar

[5] G.A. Slack, CRC Handbook of Thermoelectrics, edited by D.M. Rowe, CRC Press, Boca Raton (1995) 40.

Google Scholar

[6] G. Chen, Recent Trends in Thermoelectric Materials Research III, in Semiconductors and Semimetals, Academic Press, vol. 71 (2001) 203-259.

Google Scholar

[7] M. -S. Jeng, R. Yang, D. Song, G. Chen, J. Heat Transfer, 130 (2008) 042410.

Google Scholar

[8] L. Yang, J.S. Wu, L.T. Zhang, J. Alloys Compd., 357 (2004) 114-119.

Google Scholar

[9] J.Y. Yang, Y.H. Chen, W. Zhu, S.Q. Bao, J.Y. Peng, X. Fan, J. Phys. D: Appl. Phys. 38 (2005) 3966–3969.

Google Scholar

[10] S.Q. Bao, J.Y. Yang, X. l. Song, J.Y. Peng, W. Zhu, X.A. Fan, X.K. Duan, Mater. Sci. Eng. A 438-440 (2006) 186-189.

Google Scholar

[11] C. Recknagel, N. Reinfried, P. Höhn, W. Schnelle, H. Rosner, Yu. Grin, A. Leithe-Jasper, Sci. Technol. Adv. Mater. 8 (2007) 357-363.

DOI: 10.1016/j.stam.2007.06.007

Google Scholar

[12] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, Z. Ren, Science, 360 (2008) 634.

DOI: 10.1126/science.1156446

Google Scholar

[13] L. Hicks and M. Dresselhaus, Phys. Rev. B, 47 (1993) 16631.

Google Scholar

[14] G. Chen and A. Shakouri, J. Heat Transfer, 124 (2002) 242.

Google Scholar

[15] R. Venkatasubramanian, Recent Trends in Thermoelectric Materials Research III, in Semiconductors and Semimetals, Academic Press, vol. 71 (2001) 175-201.

DOI: 10.1016/s0080-8784(01)80129-0

Google Scholar

[16] C. Chiritescu, D.G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, P. Zschack, Science, 315 (2007) 351.

DOI: 10.1126/science.1136494

Google Scholar

[17] G. Rogl, A. Grytsiv, E. Bauer, P. Rogl, M. Zehetbauer, Intermetallics 18 (2010) 57-60.

DOI: 10.1016/j.intermet.2009.08.010

Google Scholar

[18] G. Rogl, A. Grytsiv, E. Bauer, P. Rogl, M. Zehetbauer, submitted to Intermetallics (2010).

DOI: 10.1016/j.intermet.2009.08.010

Google Scholar

[19] L. Zhang, A. Grytsiv, B. Bonarski, M. Kerber, D. Setman, E. Schafler, P. Rogl, E. Bauer, G. Hilscher, M. Zehetbauer, J. Alloys Compd., 494(2010) 78-83.

DOI: 10.1016/j.jallcom.2010.01.042

Google Scholar

[20] M. Ashida, T. Hamachiyon, K. Hasezaki, H. Matsunoshita, M. Kai, Z. Horita, J. Phys. Chem. Solids, 70 (2009) 1089-1092.

Google Scholar

[21] T. Hamachiyo, M. Ashida, K. Hasezaki, H. Matsunoshita, M. Kai, Z. Horita, Mater. Trans., 50 (2009) 1592-1595.

DOI: 10.2320/matertrans.e-m2009807

Google Scholar

[22] N.A. Smirnova, V.I. Levit, V.I. Pilyugin, R.I. Kuznetsov, L.S. Davydova, V.A. Sazonova, Fiz. Met. Metalloved. 61 (1986) 1170–1177.

Google Scholar

[23] M.J. Zehetbauer, J. Kohout, E. Schafler, F. Sachslehner, A. Dubravina, J. Alloys Compd. 378 (2004) 329–334.

DOI: 10.1016/j.jallcom.2004.01.039

Google Scholar

[24] R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y. Zhu, JOM 58 (4) (2006) 33–39.

Google Scholar

[25] E. Schafler and M.B. Kerber, Mater. Sci. Eng. A 462 (2007) 139–143.

Google Scholar

[26] M.J. Zehetbauer and Y.T. Zhu, Bulk Nanostructured Materials, WILEY-VCH Verlag GmbH & Co, Weinheim, Germany, (2009).

Google Scholar

[27] G. Rogl, A. Grytsiv, E. Bauer, P. Rogl, M. Kerber, M. Zehetbauer, in print, Intermetallics (2010).

DOI: 10.1016/j.intermet.2010.08.041

Google Scholar

[28] L. Zhang, A. Grytsiv, P. Rogl, E. Bauer, M.J. Zehetbauer, J. Phys. D: Appl. Phys. 42 (2009) 225405.

Google Scholar

[29] L. Zhang, A. Grytsiv, M. Kerber, P. Rogl, E. Bauer, M. Zehetbauer, J. of Alloys and Compd., 490 (2010) 19-25.

DOI: 10.1016/j.jallcom.2009.10.033

Google Scholar

[30] L. Zhang, A. Grytsiv, M. Kerber, P. Rogl, E. Bauer, M. Zehetbauer, J. Wosik, G.E. Nauer, J. of Alloys and Compd., 481 (2009) 106-115.

DOI: 10.1016/j.jallcom.2009.03.109

Google Scholar

[31] B. Bonarski, B. Mikułowski, E. Schafler, Ch. Holzleithner, M. Zehetbauer Arch. Metall. Mater., 53 (2008)117–123.

Google Scholar

[32] G. Ribárik, T. Ungár, J. Gubicza, J. Appl. Cryst. 34 (2001) 669-767.

Google Scholar

[33] G. Ribárik, J. Gubicza, T. Ungár, Mater. Sci. Eng. A 387–389 (2004) 343–347.

Google Scholar