Phase Transformations and Super-Elasticity of a Ni-Rich TiNi Alloy with Ultrafine-Grained Structure

Article Preview

Abstract:

A Ni-rich Ti-50.7.at%Ni alloy was processed by Equal Channel Angular Extrusion (ECAE) at 500°C. After 8 passes ECAE, microstructure was refined to sub-micron scale, approximately 0.2 μm~0.3 μm. TEM observation reveals that Ti3Ni4 phase precipitated in Ni-rich Ti-50.7.at%Ni alloy during the preheating treatment before each ECAE pass, but re-dissolved during sequent ECAE processes. After ECAE treatment, the B2R transformation occurred within a larger temperature range. Comparing with the solution-treated TiNi specimen, the martensitic transformations start (Ms) and peak temperatures (Mp) of TiNi specimens ECAEed were dramatically lowered. Super-elasticity characteristics of TiNi alloy were tested by tensile loading and unloading cycles. The results reveal that at a tensile strain of 4% or smaller, ultrafine-grained (UFG) TiNi alloy processed by 4 passes ECAE shows better super-elasticity than solution-treated sample. Microstructure evolution and its effect on phase transformations and super-elasticity characteristics have been discussed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 667-669)

Pages:

1137-1142

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Miyazaki, S., Otsuka, K., Wayman, C.M., Acta Metall. 37 (7), 1873-1884 (1989).

Google Scholar

[2] Cai, W., Meng, X.L., Zhao, L.C., Curr Opin Solid ST M. 9, 296-302 (2005).

Google Scholar

[3] Kim, J.I., Liu, Y.N., Miyazaki, S., Acta Mater. 52 (2), 487-499 (2004).

Google Scholar

[4] Otsuka, K., Wayman, C.M., Cambridge University Press, Cambridge, United Kingdom, (1998).

Google Scholar

[5] Shu, T.Y., et al, Shanghai Jiaotong University Press, Shanghai, China, (2000).

Google Scholar

[6] Zhou, Y.M., Zhang, J., Fan, G. lL., et al, Acta Mater. 53, 5365-5377 (2005).

Google Scholar

[7] Pushin, V.G., Stolyarov, V.V., Valiev, R.Z., et al, Ann Chim Sci Mat. 27 (3), 77-88 (2002).

Google Scholar

[8] Pushin, V.G., Valiev, R.Z., Zhu, Y.T., et al, Mater Sci Forum. 503-504, 539-544 (2006).

Google Scholar

[9] Sergueeva, A.V., Song, C., Valiev, R.Z., et al, Mater Sci Eng A. 339 (1-2), 159-165 (2003).

Google Scholar

[10] Fan, Z.G., Xie, C.Y., Mater Lett. 62, 800-803 (2008).

Google Scholar

[11] I. Karaman, H.E. Karaca, Z.P. Luo et al, Metall Mater Trans A. 34 (11), 2527-2539 (2003).

Google Scholar

[12] Waitz, T., Kazykhanov, V., Karnthaler, H.P., Acta Mater. 52 (1), 137-147 (2004).

Google Scholar

[13] Karaman, I., Kulkarni, A.V., Luo, Z.P., Philos Mag A. 85 (16), 1729-1745 (2005).

Google Scholar

[14] Kockar, B., Karaman, I., Kulkarni, A., et al, J Nucl Mater. 361, 298-305 (2007).

Google Scholar

[15] Xie, C.Y., Fan, Z.G., Mater Sci Forum. 503-504, 1013-1018 (2006).

Google Scholar

[16] Murayama, M., Horita, Z., Hono, K., Acta Mater. 49, 21-29 (2001).

Google Scholar

[17] Xu, X.C., Liu, Z.Y., Dang, P., et al., Materials Heat Treatment. 30 (4), 1-6 (2005).

Google Scholar

[18] Horita, Z., Oh-ishi, K., Kaneko, K., Sci Technol Adv Mat. 7, 649-654 (2006).

Google Scholar

[19] Dang, P., Xu, X.C., Liu, Z.Y., et al., Transactions of Materials and Heat Treatment. 28 (5), 82-85 (2007).

Google Scholar

[20] Xu, X.C., Liu, Z.Y., Li, Y.T., et al., Trans Nonferrous Met Soc China. 18, 1047-1052 (2008).

Google Scholar