Overview on the Corrosion Behavior of Ultra-Fine Grained Materials Fabricated by Equal-Channel Angular Pressing

Article Preview

Abstract:

With the development of the ECAP technology, the corrosion behavior of the UFG materials has been investigated in some degree. Two categories of corrosion behaviors of UFG material were discussed in this paper. The large proportion of the non-equilibrium grain boundaries and high residual stress inside of the grain were regarded as the key to affect the corrosion behavior of the UFG materials. The corrosion behavior was also affected by the ECAP factors especially the press pass number and the pressing temperature. Finally some prospects of making UFG materials combined with high mechanical property and good corrosion resistance by ECAP technology were expounded.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 667-669)

Pages:

1131-1136

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog Mater Sci Vol. 45 (2000), p.103.

Google Scholar

[2] R. Z Valiev, I.V. Alexandrov, Nanostructured Materials Obtained by Severe Plastic Deformation, Logos, Moscow, Russia, 2000, P 272 (in Russian).

Google Scholar

[3] A. Vingogradov, T. Mimaki, S. Hashimoto, R.Z. Valiev. Scripta Mater Vol. 41 (1999), p.319.

Google Scholar

[4] R. Rofagha, U. Erb, D. Ostander, G. Palumbo, K.T. Aust, Nanostruct. Mater. Vol. 2 (1993), p.12.

Google Scholar

[5] S.J. Thorpe, B. Ramaswam, A.T. Aust, J. Electrochem. Soc. Vol. 135 (1998), p.2162.

Google Scholar

[6] A. Balyanov J. Kutnyakova, N.A. Amirkhanova, Scripta Mater. Vol. 51 (2004), p.225.

Google Scholar

[7] M.K. Chung Y.S. Choi, J.G. Kim, Mater. Sci. Eng. A Vol. 336 (2004), p.282.

Google Scholar

[8] T. Yamasaki, H. Miyamoto, T. Mimaki, Mater. Sci. Eng. A Vol. 318 (2001), p.122.

Google Scholar

[9] B. Hadzima, M. Janeček, Y. Estrin. Mater. Sci. Eng. A Vol. 462 (2006) p.243.

Google Scholar

[10] R.Z. Valiev, T.G. Langdon, Prog. Mater Sci. Vol. 51 (2006), p.881.

Google Scholar

[11] Y. Iwahashi, J.T. Wang , Z. Horita , M. Nemoto , T.G. Langdon, Scripta Mater. Vol. 35 (1996), p.35.

Google Scholar

[12] K. Nakashima, Z. Horita, M. Nemoto, T.G. Langdon, Mater Sci Eng. A Vo. 281 (200) p.281.

Google Scholar

[13] Z. Horita, M. Furukawa, M. Nemoto, T.G. Langdon. Mater Sci Tech Vol. 16 (2000), p.1239.

Google Scholar

[14] P.B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon, Metall Mater Trans. Vol. 30 A (1999), p. (1989).

Google Scholar

[15] K.T. Aust, U. Erb, G. Palumbo, Mater. Sci. Eng. A Vol. 176 (1994), p.329.

Google Scholar

[16] R Z. Valiev, E.V. kozlov, Y.F. Ivanov, J. Lian, A.A. Nazarov, B. Baudelet, Acta Metall. Vol. 42 (1994), p.2467.

DOI: 10.1016/0956-7151(94)90326-3

Google Scholar

[17] R.B. Mears, R.H. Brown, Ind. Eng. Chem. Vol. 33 (1941), p.1001.

Google Scholar