Processing and Characterization of Pure Nickel Sheets by Constrained Groove Pressing (CGP) Technique

Article Preview

Abstract:

Pure nickel sheets are severe plastically deformed by constrained groove pressing technique at room temperature up to three passes. A total strain magnitude of 3.48 is imparted to the sheets and further processing is limited by initiation of surface microcracks. The grain size evolution studied by optical microscopy reveals significant grain refinement at the end of third pass evidently illustrating the effectiveness of groove pressing technique for grain refinement in sheet materials. Vickers microhardness measured during different stages of groove pressing process clearly describes the deformation behaviour in different segments of slant and flat regions. The change in mechanical properties of constrained groove pressed sheet is evaluated by room temperature tensile and microhardness tests. Results showed considerable increase in strength and hardness during initial passes followed by slight drop during third pass.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 667-669)

Pages:

523-528

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov: Progr. Mat. Sci. Vol. 45 (2000), p.103.

Google Scholar

[2] V. M Segal, V.I. Reznikov, A.E. Drobyshevskiy and V. I . Kopylov: Russ. Metall. Vol. 1 (1981), p.99.

Google Scholar

[3] V. M Segal: Mat. Sci. Eng Vol. A197 (1995) p.157.

Google Scholar

[4] G.A. Salishchev, S. Yu. Mironov and S. Vzherebtsov: Rev. Adv. Mater. Sci. Vol. 11 (2006), p.152.

Google Scholar

[5] R.Z. Valiev, N.A. Krasilnikov N.K. Tenev: Mat. Sci. Eng. Vol. A197 (1991), p.35.

Google Scholar

[6] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai and R.G. Hong: Scripta Mater. Vol. 39 (1998), p.1221.

Google Scholar

[7] Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai: Acta Mater. Vol. 47 (1999), p.579.

Google Scholar

[8] D.H. Shin, J.J. Park, Y.S. Kim and K.T. Park: Mater. Sci. Eng. Vol. A328 (2002), p.98.

Google Scholar

[9] A. Krishnaiah, U. Chakkingal and P. Venugopal: Scripta Mater. Vol. 52 (2005), p.1229.

Google Scholar

[10] A. Krishnaiah, U. Chakkingal and P. Venugopal: Mater. Sci. Eng. Vol. A410-411 (2005), p.337.

Google Scholar

[11] D.A. Hughes and N. Hansen: Acta Mater. Vol. 45 (1997), p.3871.

Google Scholar

[12] D.A. Hughes and N. Hansen: Acta Mater. Vol 48 (2000), p.2985.

Google Scholar

[13] E. Rafizadeh, A. Mani and M. Kazeminezhad: Mater. Sci. Eng. Vol. A515 (2009), p.162.

Google Scholar

[14] F. Khodabakhshi, M. Kazeminezhad and A.H. Kokabi: Mater. Sci. Eng. Vol. A527 (2010), p.4043.

Google Scholar

[15] S.A. Hosseini and H.D. Manesh: Materials and Design Vol. 30 (2009), p.2911.

Google Scholar

[16] F. Dalla Torre, R. Lapovok, J. Sandlin, P.F. Thomson, C.H.J. Davies and E.V. Pereloma: Acta Mater. Vol. 52 (2004), p.4819.

DOI: 10.1016/j.actamat.2004.06.040

Google Scholar

[17] Y. Estrin,A. Molotnikov C.H.J. Davies and R. Lapovok: J. Mech. Phys. Solids Vol. 56 (2008) p.1186.

Google Scholar

[18] P.W.J. McKenzie,R. Lapovok and Y. Estrin: Acta Mater. Vol. 55 (2007), p.2985.

Google Scholar

[19] F.J. Humphreys, M. Hatherly: Recrystallization and Related Annealing Phenomena, (Oxford, 2004).

Google Scholar