Production of Bulk Ultrafine Grained Steel through Severe Plastic Deformation

Article Preview

Abstract:

In the present research, a combined forward extrusion-equal channel angular pressing (FE-ECAP) was developed and used for production of bulk ultrafine grained steel in the high temperature conditions. In this method, two different deformation steps including forward extrusion and equal channel angular pressing takes place successively in a single die. The deformation process was performed at different deformation start temperatures (800, 930, and 1100 °C). In addition, 3D finite element simulation was used to predict the hot/warm deformation parameters such as strain and temperature variations within the samples during deformation. The results show that the EF-ECAP process is effective in refining the grains from initial size of 32 m to final size of 0.9 m after executing of extrusion and ECAP on as received samples. The main mechanisms of grain refinement were considered to be strain assisted transformation, dynamic strain-induced transformation, and continuous dynamic recrystallization.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 667-669)

Pages:

583-588

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Q. Han, F. A. Mohamed and E. J. Lavernia: J. of Mater. Sci. Vol. 38 (2003), p.3319.

Google Scholar

[2] C.Y. Yu, P. W. Kao, C. P. Chang: Acta Mater. Vol. 53 (2005) p.4019.

Google Scholar

[3] J. Majta, K. Muszka: Mater. Sci. and Eng. A Vol. 464 (2007) p.186.

Google Scholar

[4] T. G. Langdon: J. of Mater. Sci. Vol. 42 (2007) p.3388.

Google Scholar

[5] R. Z. Valiev, R. K. Islamgoliev, I. V. Alexandrov: Progress in Mater. Sci. Vol. 45 (2000) p.103.

Google Scholar

[6] Z. Horita, and et al.: Mater. Sci. and Technol. Vol. 16 (2000) p.1239.

Google Scholar

[7] N. Tsuji, Y. Saito, H. Utsunomiya, S. Tanigawa: Scr. Mater. Vol. 40 (1999) p.795.

Google Scholar

[8] Y. Fukuda, K. Oh-ishi, Z. Horita, T. G. Langdon: Acta Mater. Vol. 50 (2002) p.1359.

Google Scholar

[9] D. H. Shin, K. T. Park: Mater. Sci. and Eng. A Vol. 410–411 (2005) p.299.

Google Scholar

[10] D. Nagarajan, and et al.: J. of Mater. Process. Technol. Vol. 182 (2006) p.363.

Google Scholar

[11] Y. Estrin, and et al.: Metall. and Mater. Trans. A, Vol. 38 (2007) p. (1906).

Google Scholar

[12] Y. Iwahashi, and et al.: Scr. Mater. Vol. 35 (1996) p.143.

Google Scholar

[13] Q. X. Pei, B. H. Hu, C. Lu, Y.Y. Wang: Scr. Mater. Vol. 49 (2003) p.303.

Google Scholar

[14] S. Merkel, and et al.: Physics of the Earth and Planetary Interiors Vol. 145 (2004) p.239.

Google Scholar

[15] E. Yu Tonkov, E. G. Ponyatovsky, CRC press (2005) p.253.

Google Scholar

[16] H. Dong, X. Sun: Current Opinion in Solid State and Mater. Sci. Vol. 9 (2005) p.269.

Google Scholar

[17] H. Beladi, and et al.: Mater. Sci. and Eng. A Vol. 367 (2004) p.152.

Google Scholar

[18] Ch. Zheng, D. Li, Sh. Lu, Y. Li: Scr. Mater. Vol. 58 (2008) p.838.

Google Scholar

[19] B. Eghbali: Mater. Lett. Vol. 61 (2007) p.4006.

Google Scholar

[20] S. I. Kim, Y. C. Yoo: Mater. Sci. and Eng. A, Vol. 311 (2001) p.108.

Google Scholar

[21] N. Tsuji, Y. Matsubara, Y. Saito: Scr. Mater. Vol. 37 (1994) p.1193.

Google Scholar

[22] Y. Matsubara, N. Tsuji, Y. Saito, International Conference on Thermomechanical Processing of Steels and Other Materials (THERMEC'97), ed. by T. Chandraand T. Sakai. TMS-AIME, Warrendale, PA (1997) p.653.

Google Scholar

[23] M. R. Barnett, J. J. Jonas: ISIJ Int. Vol. 39 (1999) p.856.

Google Scholar

[24] S. C. Hong, and et al.: Ultrafine grained materials III, TMS (2004) p.641.

Google Scholar