Processing of Ultrafine Grained Cu-30%Zn Alloy through Severe Plastic Deformation Using Accumulative Roll Bonding

Article Preview

Abstract:

In the present research, the microstructural features of ultrafine grained Cu-30 Zn alloy via ARB at room temperature were investigated by X-ray diffraction peak profile analysis. The character of dislocations was determined by analyzing the dislocation contrast factors. The average contrast factors for the different reflections obtained by determination of the type of dislocations and Burgers vectors in crystals. Also, using the modified Williamson–Hall and Warren–Averbach procedure size parameters, the effective outer cut-off radius and density of dislocations were determined. Assuming that the grain size distribution is log-normal, the median and the variance of the size distribution of sub grains were obtained. It was found that the crystallite size is reduced substantially, while the dislocation density increases up to 2 cycles of ARB. After 2nd cycle, dislocation density decreases. This is attributed to the occurrence of dynamic restoration process which takes place during next ARB cycles.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 667-669)

Pages:

571-576

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Conrad, H.: Mat. Sci. Eng. A 341(1-2) (2003) p.216.

Google Scholar

[2] Http: /www. nano. ir/paper. php?papercode=482-490‏.

Google Scholar

[3] J. Zrnik, S.V. Dobatkin, I. Mamuzic: Metabk 211-216 (2008).

Google Scholar

[4] A.L.M. Costa, A.C.C. Reis, L. Kestens, M.S. Andrade: Mater. Sci. Eng. A 406 (2005) p.279.

Google Scholar

[5] N Tsuji, Y Saito, H Utsunomiya and S Tanigawa: Scr. Mater. 40 (1999) p.795.

Google Scholar

[6] Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai: Acta‏ Mater. Vol. 47 (1999) p.579.

Google Scholar

[7] H W Hoppel, J May and M Goken: Adv Eng Mater 5 (2004) p.219.

Google Scholar

[8] Y Saito, N Tsuji, H Utsunomiya, T Sakai, R G Hong: Scr. Mater. 39 (1998) p.1221.

Google Scholar

[9] J. Gubicza, et al.: Zeitschrift für Metallkunde 94 (2003) p.1185.

Google Scholar

[10] E. Schafler, M. Zehetbauer, A. Borbely, T. Ungar: Mater. Sci. Eng., A‏ 234/236 (1997) p.445.

Google Scholar

[11] J. D. Kamminga, L. J. Seijbel, J. Res: Natl. Inst. Stand. Technol. 109 (2004)‏ p.65.

Google Scholar

[12] D. Fatay, E. Bastarash, K. Nyilas, S. Dobatkin, J. Gubicza, T. Ungar, Z. ‏ Metallkd. 94 (2003) p.1.

Google Scholar

[13] B.E. Warren, Addison-Wesley, Reading MA, (1969).

Google Scholar

[14] M. A. Krivoglaz, O. V. Martynenko, K. P. Ryaboshapka: Phys. Met. Metall. 55 (1983) p.1.

Google Scholar

[15] T. Ungar, et al.: Nanostructured Mater. 11 (1999) p.103.

Google Scholar

[16] G.K. Williamson and W.H. Hall: Acta Metall. 22 (1953) p.22.

Google Scholar

[17] T. Ungar, I. Dragomir, A. Revesz, A. Borbely: J. Appl. Cryst. 32 (1999) p.992.

Google Scholar

[18] A. Revesz, T. Ungar, A. Borbely and J. Lendvai: Nano Struc. Mater. 7 (1996) p.779.

Google Scholar

[19] T. Ungar, J. Gubicza, G. Ribarik, and A. Borbely: Appl. Cryst. 34 (2001) p.298.

Google Scholar

[20] T. Ungar, A. Borbely: Appl. Phys. Lett. 69 (1996) p.3173.

Google Scholar

[21] M. Wilkens: Phys. Status Solidi, A Appl. Res. 2 (1970) p.359.

Google Scholar

[22] M. A. Berlin Krivoglaz: Springer-Verlag (1996).

Google Scholar