Cooperative Grain Boundary Sliding and Shear Banding at High Strains in Ultrafine Grained and Nanocrystalline Pd Alloys

Article Preview

Abstract:

Instrumented high pressure torsion, i.e. mechanical test in a torsion mode under high pressure, allows interesting possibility of materials testing, because materials mechanical response can be studied in a practically unlimited shear strain range. We have studied microstructures formed in initially coarse crystalline and nanocrystalline (nc) Pd and its alloys after instrumented HPT up to shear strain 300, and revealed signatures of similar processes occurring in all these materials. In particular, we found traces of cooperative grain boundary sliding in the form of aligned in parallel segments of boundaries of several grains with straightened triple points. Fracture surfaces contained shear bands. Texture measurements revealed lower dislocation activity in nanocrystalline state as compared with coarse crystalline one. Therefore we argue that cooperative grain boundary sliding is an important deformation mechanism at large strain which develops in both ultrafine grained (ufg) and nanocrystalline materials. In nc and ufg materials planes of cooperative grain boundary sliding act as precursors of shear bands and shear occurs along planes formed by numerous grain boundaries.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 667-669)

Pages:

649-656

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Wetscher, A. Vorhauer and R. Pippan: Mater. Sci. Eng. Vol. A410-411 (2005), p.213.

Google Scholar

[2] Yu. Ivanisenko, L. Kurmanaeva, J. Weissmueller, K. Yang, J. Markmann, H. Rösner, T. Scherrer, H. -J. Fecht: Acta Mater. Vol. 57 (2009), p.3391.

DOI: 10.1016/j.actamat.2009.03.049

Google Scholar

[3] R. Pippan, S. Scheriau, A. Taylor, M. Hafok, A. Hohenwarter and A. Bachmaier: Annu. Rev. Mater. Res. Vol. 40 (2010), p.319.

DOI: 10.1146/annurev-matsci-070909-104445

Google Scholar

[4] A.P. Zhilyaev and T.G. Langdon: Prog. Mater. Sci. Vol. 58 (2008), p.893.

Google Scholar

[5] R. Birringer, H. Gleiter, H. -P. Klein and P. Marquardt: Phys. Lett. Vol. 102A (1984), p.365.

Google Scholar

[6] L. Kurmanaeva, Yu. Ivanisenko, J. Markmann, C. Kübel, A. Chuvilin, S. Doyle, R.Z. Valiev and H. -J. Fecht: Mat Sci Eng. Vol. A527 (2010), p.1776.

DOI: 10.1016/j.msea.2009.11.001

Google Scholar

[7] A. Vorhauer and R. Pippan: Metal. Mater. Trans. A Vol. 39A (2008), p.417.

Google Scholar

[8] N.A. Enikeev, E. Schafler, M. Zehetbauer, I.V. Alexandrov and R.Z. Valiev: Mater. Sci. Forum Vols. 584-586 (2008), p.367.

DOI: 10.4028/www.scientific.net/msf.584-586.367

Google Scholar

[9] X.Z. Liao, A.R. Kilmametov, R.Z. Valiev, H. Gao, X. Li, A.K. Mukherjee, J.F. Bingert and Y.T. Zhu: Appl. Phys. Lett. Vol. 88 (2006), p.021909.

DOI: 10.1063/1.2159088

Google Scholar

[10] A. Kutlovitz, S.X. Mao and J.M.K. Wiezorek: Acta Mater. Vol. 56 (2008), p.4836.

Google Scholar

[11] Yu. Ivanisenko, W. Skrotzki, R. Chulist, T. Lippmann, K. Yang, L. Kurmanaeva and H. -J. Fecht: J. Mater. Sci. Vol. 45 (2010), p.4571.

DOI: 10.1007/s10853-010-4552-y

Google Scholar

[12] H. Hahn and K. A. Padmanabhan: Philos. Mag. Vol. 76 (1997), p.559.

Google Scholar

[13] O.A. Kaibyshev, R.Z. Valiev and A.K. Emaletdinov: Phys. Stat,. Sol. (a) Vol. 90 (1985), p.197.

Google Scholar

[14] D.V. Bachurin, P. Gumbsch: Acta Mater. Vol. 58 (2010), p.5491.

Google Scholar

[15] L. Kurmanaeva, Yu. Ivanisenko, J. Markmann, K. Yang, H. -J. Fecht and J. Weissmüller: Phys. Stat. Sol. RRL Vol. 4 (2010), p.130.

DOI: 10.1002/pssr.201004095

Google Scholar

[16] H. Rösner, N. Boucharat, J. Markmann, K.A. Padmanabhan and G. Wilde, Mat. Sci. Eng. Vol. A525 (2009), p.102.

Google Scholar

[17] A. H Chokshi, A.K. Mukherjee and T.G. Langdon: Mat. Sci. Eng. R Vol. 10 (1993), p.237.

Google Scholar

[18] J.W. Edington, K. N. Melton and C. P. Cutler: Prog. Mater. Sci. Vol. 21 (1976), p.61.

Google Scholar

[19] V.V. Astanin and O.A. Kaibyshev: Mater. Sci. Forum Vols. 170-172 (1994), p.23.

Google Scholar

[20] V.V. Astanin, S.N. Faizova and K.A. Padmanabhan: Mat. Sci. Technol. Vol. 12 (1996), p.489.

Google Scholar

[21] V.V. Astanin, A.V. Sisanbaev, A.I. Pshenichnyuk and O.A. Kaibyshev: Scripta metall. Mater. Vol. 36 (1997), p.117.

DOI: 10.1016/s1359-6462(96)00336-3

Google Scholar

[22] F.A. Mohamed: J. Mat. Sci. Vol. 18 (1983), p.582.

Google Scholar

[23] A.I. Pshenichnyuk, O.A. Kaibyshev, V.V. Astanin: Phil. Mag. A, Vol. 79(2) (1999), p.329.

Google Scholar