Effect of Hydrostatic Pressure on the Microstructure and Mechanical Properties during and after High Pressure Torsion

Article Preview

Abstract:

The presence of a hydrostatic pressure as a general feature of SPD methods is essential for achieving the high strains and the introduction of the high amount of lattice defects, which are necessary to establish new grain boundaries. Systematic investigations of High Pressure Torsion (HPT)-deformed Cu under variation of strain and hydrostatic pressure revealed marked differences between the in-situ torsional stress (torque measurement) and the post-HPT strength of the ultrafine-grained materials. These facts let assume the occurrence of relaxation processes (recovery/recrystallisation) of static character with respect to the release of the hydrostatic pressure after straining. In order to gain insight into the processes behind, a special experimental procedure was designed to simulate the hydrostatic pressure release. Investigations by X-ray line profile analysis and hardness measurement show marked influences of the pressure release on microstructure and strength. While the size of the coherently scattering domains is not strongly affected, the dislocation density decreases drastically and the arrangement of the dislocations within the subgrain structure changes to a less stress intensive one, upon the pressure release. In parallel the hardness decreases significantly and confirms the discrepancy between in-situ torque-stress and post-HPT strength.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 667-669)

Pages:

657-664

Citation:

Online since:

December 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater. Sci. 45 (2000) p.103.

Google Scholar

[2] R.Z. Valiev, Nature 419 (2002) p.887.

Google Scholar

[3] Y. H. Zhao, Y. T. Zhu, X. Z. Liao, Z. Horita, T. G. Langdon, Appl. Phys. Lett. 89 (2006) 121906.

Google Scholar

[4] R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y.T. Zhu, JOM 58 (4) (2006) p.33.

Google Scholar

[5] Bulk Nanostructured Materials, M.J. Zehetbauer, Y.T. Zhu (Eds. ), Whiley-VCH, Weinheim, Germany, (2009).

Google Scholar

[6] A.A. Nazarov A.E. Romanov R.Z. Valiev, Acta. Metall. Mater. 41 (1993) p.1033.

Google Scholar

[7] J. Gubicza, N. H. Nam, L. Balogh, R. J. Hellmig, V. V. Stolyarov, Y. Estrin, T. Ungár, J. Alloy Compd. 378 (2004) p.248.

DOI: 10.1016/j.jallcom.2003.11.162

Google Scholar

[8] E. Schafler, G. Steiner, E. Korznikova, M. Kerber, M. J. Zehetbauer, Mater. Sci. Eng. A 410-411 (2005) p.169.

Google Scholar

[9] M. Zehetbauer, Key Eng. Mater. 97-98 (1994) 287.

Google Scholar

[10] X.Z. Liao, Y.H. Zhao, S.G. Srinivasan, Y.T. Zhu, R.Z. Valiev, D.V. Gunderov, Appl. Phys. Lett. 84 (2004) p.592.

Google Scholar

[11] M. Zehetbauer, H.P. Stüwe, A. Vorhauer, E. Schafler, J. Kohout, Adv. Eng. Mater. 5 (2003) p.330.

DOI: 10.1002/adem.200310090

Google Scholar

[12] M. Zehetbauer, Acta Metall. Mater. 41 (1993) p.589.

Google Scholar

[13] P. Les, M. Zehetbauer, Key Eng. Mater. 97-98 (1994) p . 335.

Google Scholar

[14] M. Zehetbauer, P. Les, Kovove Mater. 36 (1998) p.153.

Google Scholar

[15] A. Dubravina, M. Zehetbauer, E. Schafler, I. Alexandrov, Mater. Sci. Eng. A 387-389 (2004) p.817.

Google Scholar

[16] M. Zehetbauer, V. Seumer, Acta Metall. Mater. 41 (1993) p.577.

Google Scholar

[17] E. Schafler, Scripta Mater. 62 (2010) p.423.

Google Scholar

[18] M. Wilkens, Fundamental Aspects of Dislocation Theory, ed. J. A. Simmons, R. de Wit, R. Bullough, Vol. II. Nat. Bur. Stand. (US) Spec. Publ. No. 317, Washington, DC. USA (1970) p.1195.

DOI: 10.6028/nbs.sp.317v1

Google Scholar

[19] T. Ungár, A. Borbély, Appl. Phys. Lett. 69 (1996) p.3173.

Google Scholar

[20] T. Ungár,I. Dragomir, A. Revesz, A. Borbély, J. Appl. Cryst. 32 (1999) p.992.

Google Scholar

[21] T. Ungár, Adv. Eng. Mater. 5 (2003) p.323.

Google Scholar

[22] G. Ribárik, T. Ungár, J. Gubicza, J. Appl. Cryst. 34 (2001) p.669.

Google Scholar

[23] D. Setman, M.B. Kerber, E. Schafler, M.J. Zehetbauer, Metall. Mater. Trans. A 41 (2010) p.810.

Google Scholar

[24] M.B. Kerber, E. Schafler, A.K. Wieczorek, G. Ribarik, S. Bernstorff, T. Ungar, M.J. Zehetbauer, Int. J. Mater. Res. 100 (2009) p.770.

DOI: 10.3139/146.110097

Google Scholar

[25] T. Ungár, E. Schafler, P. Hanák, S. Bernstorff, M. Zehetbauer, Z. Metallk. 96 (2005) p.578.

Google Scholar

[26] T. Hebesberger, H. Stuewe, A. Vorhauer, F. Wetscher, and R. Pippan, Acta. Mater. 53 (2005) p.393.

DOI: 10.1016/j.actamat.2004.09.043

Google Scholar

[27] E. Schafler, A. Dubravina, B. Mingler, H.P. Karnthaler, M. Zehetbauer, Mater. Sci. Forum 503-504 (2006) p.51.

DOI: 10.4028/www.scientific.net/msf.503-504.51

Google Scholar

[28] M. Zehetbauer, T. Ungar, R. Kral, A. Borbely, E. Schafler, B. Ortner, H. Amenitsch, S. Bernstorff, Acta Mater. 47 (1999) p.1053.

Google Scholar

[29] M.J. Zehetbauer, G. Steiner, E. Schafler, A. Korznikov, E. Korznikova, Mater. Sci. Forum 503-504 (2006) p.57.

DOI: 10.4028/www.scientific.net/msf.503-504.57

Google Scholar

[30] E. Schafler, Scripta Mater. 62 (2010) doi: 10. 1016/j. scriptamat. 2010. 09. 026.

Google Scholar

[31] M. Zehetbauer, J. Kohout, E. Schafler, F. Sachslehner, A. Dubravina, J. Alloys Compd. 378, (2004) p.329.

DOI: 10.1016/j.jallcom.2004.01.039

Google Scholar

[32] H. Wollenberger, Point defects ch. 18 in: Physical Metallurgy, R. Cahn, P. Haasen eds., Elsevier, Amsterdam (1996), p.1189.

Google Scholar