Correlation of Physical Parameters with Steady-State Hardness of Pure Metals Processed by High-Pressure Torsion

Article Preview

Abstract:

Pure metals of 30 elements with various crystal structures (bcc, fcc, hcp, diamond cubic, complex cubic, primitive hexagonal and tetragonal) are processed by high-pressure torsion (HPT) and their mechanical properties are subsequently evaluated by Vickers microhardness measurements. For all metals, the hardness reaches steady states at large strains where the hardness remains unchanged with further straining. It is shown that the hardness values at the steady state are characteristics of each metal and are successfully expressed as a unique function of the homologous temperature, shear modulus and physical parameters of metals such as melting temperature, specific heat capacity and diffusion coefficient except for a few elements. The findings are well applicable to predict the ultimate steady-state hardness of metals attained by HPT processing through the correlation established in this study.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 667-669)

Pages:

683-688

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.W. Bridgman: Phys. Rev. Vol. 48 (1935), p.847.

Google Scholar

[2] R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov: Prog. Mater. Sci. Vol. 45 (2000), p.103.

Google Scholar

[3] R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer and Y.T. Zhu: JOM Vol. 58(4) (2006), p.33.

Google Scholar

[4] A.P. Zhilyaev and T.G. Langdon: Prog. Mater. Sci. Vol. 53 (2008), p.893.

Google Scholar

[5] K. Edalati, T. Fujioka and Z. Horita: Mater. Trans. Vol. 50 (2009), p.44.

Google Scholar

[6] S.W. Lee, K. Edalati and Z. Horita: Mater. Trans. Vol. 51 (2010), p.1072.

Google Scholar

[7] Y. Harai, Y. Ito and Z. Horita: Scripta Mater. Vol. 58 (2008), p.469.

Google Scholar

[8] K. Edalati, Y. Ito, K. Suehiro and Z. Horita: Int. J. Mater. Res. Vol. 100 (2009), p.1668.

Google Scholar

[9] M. Kawasaki, B. Ahn and T.G. Langdon: J. Mater. Sci. Vol. 45 (2010), p.4583.

Google Scholar

[10] C. Xu, Z. Horita, T.G. Langdon, Acta Mater. 55 (2007), p.203.

Google Scholar

[11] K. Edalati, T. Fujioka and Z. Horita: Mater. Sci. Eng. A Vol. 497 (2008), p.168.

Google Scholar

[12] K. Edalati and Z. Horita: Mater. Trans. Vol. 51 (2010), p.1051.

Google Scholar

[13] K. Edalati, E. Matsubara and Z. Horita: Metall. Mater. Trans. A Vol. 40 (2009), p. (2079).

Google Scholar

[14] K. Edalati, Z. Horita, S. Yagi and E. Matsubara: Mater. Sci. Eng. A Vol. 523 (2009), p.277.

Google Scholar

[15] K. Edalati, Z. Horita and Y. Mine: Mater. Sci. Eng. A Vol. 527 (2010), p.2136.

Google Scholar

[16] F. Wetscher, A. Vorhauer and R. Pippan: Mater. Sci. Eng. A Vol. 410-411 (2005), p.213.

Google Scholar

[17] K. Edalati and Z. Horita: Scripta Mater. (1991), in press.

Google Scholar

[18] A. Buch: Short Handbook of Metal Elements Properties and Elastic Properties of Pure Metals, Krzysztof Biesaga, Warasaw (2005).

Google Scholar

[19] H.J. Frost and M. F. Ashby: Deformation-Mechanism Maps, The plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford (1982).

Google Scholar

[20] T. Suzuki, Y. Kamimura and H.O.K. Kirchner: Philos. Mag. A Vol. 79 (1999), p.1629.

Google Scholar