Strain Rate Sensitivity of Ultrafine-Grained CP-Ti Processed by ECAP at Room Temperature

Article Preview

Abstract:

Ultrafine-grained (UFG) commercially pure (CP) Ti with a grain size of about 200 nm was produced by ECAP up to 8 passes using route BC at room temperature. For ECAP processing a proper die set was designed and constructed with an internal channel angle Φ of 120° and an outer arc of curvature Ψ of 20°. Strain rate sensitivity of UFG CP-Ti and CG CP-Ti were investigated by compression tests in the temperature range of 298~673K and strain rate range of 10-4~100s-1 using Gleeble simulator machine. Evolution of the microstructure during compression testing was observed using optical microscopy (OM) and transmission electron microscopy (TEM). Strain rate sensitivity value m of the UFG CP-Ti has been measured and is found to increase with increasing temperature and decreasing strain rate, and is enhanced compared to that of CG CP-Ti. Result of the deformation activation energy determination of UFG CP-Ti indicates that the deformation mechanism in UFG CP-Ti is correlated to the grain boundaries.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 667-669)

Pages:

707-712

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Dalla-Torre, R. Lapovok, J. Sandlin, P. F. Thomson, C.H.J. Davies and E.V. Pereloma: Acta Mater. Vol. 52(2004), p.4819.

DOI: 10.1016/j.actamat.2004.06.040

Google Scholar

[2] R.Z. Valiev and I.V. Alexandrov: J Mater Res. Vol. 17(2002), p.5.

Google Scholar

[3] H.W. Höppel, J. May and M. Göken: Adv. Eng. Mater Vol. 6(2004), p.781.

Google Scholar

[4] R.Z. Valiev: Nature Materials Vol. 3(2004), p.511.

Google Scholar

[5] R.Z. Valiev, E.V. Kozlov, Y.F. Ivanov, J. Lian, A.A. Nazarov and B. Baudelet: Acta Metall Mater Vol. 42(1994), p.2467.

DOI: 10.1016/0956-7151(94)90326-3

Google Scholar

[6] R.Z. Valiev: Mater Sci Eng A Vol. 234–236(1997), p.59.

Google Scholar

[7] R. Z. Valiev, R.K. I slamgaliev and I.V. Alexandrov: Prog. Mater. Sci. Vol. 45(2000), p.103.

Google Scholar

[8] K.T. Park, H.J. Lee, C.S. Lee and D.H. Shin: Mater. Sci. Eng. A Vol. 393(2005), p.118.

Google Scholar

[9] Y.G. Ko, D.H. Shin, K.T. Park and C.S. Lee: Mater. Sci. Eng. A Vol. 449-451(2007), p.756.

Google Scholar

[10] R.Z. Valiev, T.G. Langdon. Prog. Mater. Sci. Vol. 51(2006), p.881.

Google Scholar

[11] Q. Wei, S. Cheng, K.T. Ramesh and E. Ma: Mater Sci Eng A Vol. 381(2004), p.71.

Google Scholar

[12] F. Dalla-Torre, E.V. Pereloma and C.H.J. Davies: Scripta Mater. Vol. 51(2004), p.367.

Google Scholar

[13] J. May, H.W. Höppel and M. Göken: Scripta Mater. Vol. 53(2005), p.189.

Google Scholar

[14] Y.J. Li, R.Z. Valiev and W. Blum: Mater Sci Eng A Vol. 410-411(2005), p.451.

Google Scholar

[15] Y.M. Wang and E. Ma: Acta Mater. Vol. 52(2004), p.1669.

Google Scholar

[16] F. Dalla-Torre, H.V. Swygenhoven and M. Victoria: Acta Mater. Vol. 50(2002), p.3957.

Google Scholar

[17] Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto and T.G. Langdon: Scripta Mater. Vol. 35(1996), p.143.

Google Scholar

[18] M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon: Mater. Sci. Eng. A Vol. 257 (1998), p.328.

Google Scholar

[19] S. Nemat-Nasser, W.G. Guo and J.Y. Cheng: Acta Mater. Vol. 47(1999), p.3705.

Google Scholar

[20] M. Doner and H. Conrad: Metall. Trans. Vol. 4(1973), p.2809.

Google Scholar

[21] W. Blum, Y.J. Li and F. Breutinger: Mater Sci Eng A Vol. 462(2006), p.275.

Google Scholar

[22] D. Jia, Y.M. Wang, K.T. Ramesh, E. Ma, Y.T. Zhu and R.Z. Valiev: Appl. Phys. Lett. Vol. 79(2001), p.611.

Google Scholar

[23] H. Conrad: The Cryogenic Properties of Metals. In: Zackay VF, editor. High Strength Materials. New York: John Wiley; 1965. p.436.

Google Scholar

[24] S. Cheng, E. Ma, Y.M. Wang, L.J. Kecskes, K.M. Youssef, C.C. Koch, et al: Acta Mater Vol. 53(2005), p.1521.

Google Scholar

[25] Y.J. Li, X.H. Zeng and W. Blum: Acta Mater Vol. 52(2004), p.5009.

Google Scholar

[26] H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps. Oxford: Pergamon Press; 1982. p.1/6.

Google Scholar