Influence of Nanoparticle Reinforcement on the Mechanical Properties of Ultrafine-Grained Aluminium Produced by ARB

Article Preview

Abstract:

Dispersed nanoparticles are introduced from stabilized suspensions during the accumulative roll bonding process in aluminium AA1050A by air gun spraying up to a final volume fraction of 0.1 % after eight cycles. Additional strengthening caused by particle insertion is observed and strongly depends on the suspension medium and stabilizing agent as both influence interfacial bonding of the particles to the matrix. The particle insertion furthermore results in reduced peel strength of the sheets irrespective of particle material and size caused by a reduction of effective metal to metal bonding area during rolling through the presence of the particles.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 667-669)

Pages:

725-730

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.W. Höppel, J. May, M. Göken, Adv. Eng. Mat. 6 (2004) 781.

Google Scholar

[2] T. Hausöl, V. Maier, C.W. Schmidt, M. Winkler, H.W. Höppel, M. Göken, Adv. Eng. Mat. 12 (2010) 740.

DOI: 10.1002/adem.201000044

Google Scholar

[3] T. Hausöl, H.W. Höppel, M. Göken, J. Mater. Sci. 45 (2010) 4733.

Google Scholar

[4] M. Alizadeh, M.H. Paydar, J. Alloys Compd. 492 (2010) 231.

Google Scholar

[5] R. Jamaati, M.R. Toroghinejad, Mat. Sci. Eng. A 527 (2010) 4146.

Google Scholar

[6] K. Kitazono, E. Sato, K. Kuribayashi, Scr. Mater. 50 (2004) 495.

Google Scholar

[7] C. Lu, K. Tieu, D. Wexler, J. Mater. Proc. Tech. 209 (2009) 4830.

Google Scholar

[8] C.W. Schmidt, C. Knieke, V. Maier, H.W. Höppel, W. Peukert, M. Göken, Scr. Mater., accepted.

Google Scholar

[9] G. Krallics, J.G. Lenard, J. Mater. Proc. Tech. 152 (2004) 154.

Google Scholar

[10] M. Alizadeh, M.H. Paydar, Mater. Des. 30 (2009) 82.

Google Scholar

[11] R. Jamaati, M.R. Toroghinejad, Mat. Sci. Eng. A 527 (2010) 4858.

Google Scholar

[12] J.A. Cave, J.D. William, J. Inst. Met. 101 (1975) 203.

Google Scholar

[13] H.A. Mohamed, J. Washburn, Weld. J. 30 (1975) 302.

Google Scholar

[14] D. Pan, K. Gao, J. Yu, Mater. Sci. Technol. 5 (1989) 934.

Google Scholar

[15] N.D. Lukaschkin, A.P. Borissow, A.I. Elrikh, J. Mater. Proc. Technol. 66 (1997) 246.

Google Scholar

[16] H.Y. Wu, S. Lee, J.Y. Wang, J. Mater. Proc. Technol. 75 (1998) 173.

Google Scholar

[17] F. Stenger, S. Mende, J. Schwedes, W. Peukert, Powder Technol. 156 (2005) 103.

Google Scholar

[18] C. Knieke, M. Sommer, W. Peukert, Powder Technol. 195 (2009) 25.

Google Scholar

[19] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Scr. Mater. 39 (1998) 1221.

Google Scholar

[20] N. Tsuji, Y. Saito, S.H. Lee, Y. Minamino, Adv. Eng. Mat. 5 (2003) 338.

Google Scholar

[21] F. Stenger, M. Götzinger, P. Jakob, W. Peukert, Part. Part. Syst. Charact. 21 (2004) 31.

DOI: 10.1002/ppsc.200400902

Google Scholar

[22] L. Li, K. Nagai, F. Yin, Sci. Tech. Adv. Mater. 9 (2008) 1.

Google Scholar

[23] L.R. Vaidyanath, D.R. Milner, British Welding J. 7 (1960) 1-6.

Google Scholar