Strengthening of CP-Ti by Rolling at Room Temperature

Article Preview

Abstract:

The effects of asymmetric and symmetric rolling at room temperature on mechanical properties and microstructure of the commercial purity Ti were investigated by means of mechanical test, optical microscopy, X-ray diffraction and transition electron microscopy. The results show that through asymmetric and symmetric rolling processes the ultimate tensile strength is substantially increased from 450 MPa to 960 MPa. Microstructure observation illustrates this variation in mechanical property is caused by the grain refinement and work hardening.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 667-669)

Pages:

737-741

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.G. Sanders, J.A. Eastman and J.R. Weertman: Acta Mater. Vol. 45 (1997), p.4019.

Google Scholar

[2] R.Z. Valiev, A.V. Korznikov and R.R. Mulyukov: Mater. Sci. Eng. A Vol. 168 (1993), p.141.

Google Scholar

[3] R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov: Prog. Mater. Sci. Vol. 45 (2000), p.103.

Google Scholar

[4] V.M. Segal: Mater. Sci. Eng. A Vol. 197 (1995), p.157.

Google Scholar

[5] R.Z. Abdulov, R.Z. Valiev and N.A. Krasilnikov: J. Mater. Sci. Lett. Vol. 9 (1990), p.1445.

Google Scholar

[6] A.V. Sergueeva, V.V. Stolyarov, R.Z. Valiev and A.K. Mukherjee: Scr. Mater. Vol. 45 (2001), p.747.

Google Scholar

[7] Y.J. Chen, Y.J. Li, J.C. Walmsley, S. Dumoulin and H.J. Roven: Metall. Mater. Trans. A Vol. 41 (2010), p.787.

Google Scholar

[8] V.V. Stolyarov, Y.T. Zhu, T.C. Lowe, R.K. Islamgaliev, R.Z. Valiev: Nanostruct. Mater. Vol. 11 (1999), p.947.

Google Scholar

[9] D.H. Shin, I. Kim, J. Kim, Y.T. Zhu: Mater. Sci. Eng. A Vol. 334 (2002), p.239.

Google Scholar

[10] V.V. Stolyarov, L. Zeipper, B. Mingler d, M. Zehetbauer: Mater. Sci. Eng. A Vol. 476 (2008), p.98.

Google Scholar

[11] X. Zhao, W. Fu, X. Yang, T.G. Langdon: Scr. Mater. Vol. 59 (2008), p.542.

Google Scholar

[12] D. Terada, S. Inoue, N. Tsuji: J. Mater. Sci. Vol. 42 (2007), p.1673.

Google Scholar

[13] Q. Cui and K. Ohori: Mater. Sci. Tech. Vol. 16 (2000), p.1095.

Google Scholar

[14] H. Jin and D.J. Lloyd: Scr. Mater. Vol. 50 (2004), p.1319.

Google Scholar

[15] W.J. Kim, J.B. Lee, W.Y. Kim, H.T. Jeong and H.G. Jeong: Scr. Mater. Vol. 56 (2007), p.309.

Google Scholar

[16] J.H. Jiang, Y. Ding, F.Q. Zuo and A.D. Shan: Scr. Mater. Vol. 60 (2009), p.905.

Google Scholar

[17] Y. Ding, J.H. Jiang and A.D. Shan: Mater. Sci. Eng. A Vol. 509 (2009), p.76.

Google Scholar

[18] W.J. Kim, S.J. Yoo and J.B. Lee: Scr. Mater. Vol. 62 (2010), p.451.

Google Scholar

[19] V.V. Stolyarov, E.A. Prokofiev, R.Z. Valiev, T.C. Lowe and Y.T. Zhu, in: Nanostructured Materials by High-Pressure Severe Plastic Deformation, edited by Y.T. Zhu and V. Varyukhin Springer, Netherland (2006).

DOI: 10.1007/1-4020-3923-9_23

Google Scholar