The Effect of Grain Boundary Sliding and Strain Rate Sensitivity on the Ductility of Ultrafine-Grained Materials

Article Preview

Abstract:

Most ultrafine-grained (UFG) materials produced by severe plastic deformation (SPD) exibit only limited ductility which is correlated with the low strain rate sensitivity (SRS) of these materials. Recently, it was demonstrated that SPD is capable of increasing the room temperature ductility of aluminum-based alloys attaining elongations up to 150%, together with relatively high strain rate sensitivity. In the present work, additional results and discussions are presented on the effect of grain boundary sliding (GBS) and SRS on the ductility of some UFG metals and alloys. The characteristics of constitutive equations describing the steady-state deformation process are quantitatively analyzed for a better understanding of the effects of grain boundaries and strain rate sensitivity.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 667-669)

Pages:

677-682

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov. Prog Mater Sci 45 (2000), p.103.

Google Scholar

[2] R.Z. Valiev, T.G. Langdon, Prog. Mater. Sci. 51 (2006), p.881.

Google Scholar

[3] A.P. Zhilyaev, T.G. Langdon, Prog Mater Sci 41 (2006), p.597.

Google Scholar

[4] N.Q. Chinh, T. Csanádi, G. Gubicza, T.G. Langdon, Acta Mater, 58 (2010), 5015.

Google Scholar

[5] N.Q. Chinh, P. Szommer, Z. Horita, T.G. Langdon, Adv. Mater. 18 (2006), p.34.

Google Scholar

[6] M.A. Meyer, A. Mishra, D.J. Benson, JOM 58(4) (2006), p.41.

Google Scholar

[7] R.Z. Valiev, M.Y. Murashkin, A. Kilmametov, B. Straumal, N.Q. Chinh, T.G. Langdon, J Mater Sci 45 (2010), p.4718.

DOI: 10.1007/s10853-010-4588-z

Google Scholar

[8] S. Komura, Z. Horita, M. Nemoto, T.G. Langdon, J Mater. Res. 14 (1999), p.4044.

Google Scholar

[9] J. Gubicza, N.Q. Chinh, J.L. Labar, Z. Hegedűs, T.G. Langdon, Mater. Sci. Eng. A527 (2010), p.752.

Google Scholar

[10] A. Vinogradov, S. Hashimono, V. Patlan, K. Kitagawa, Mater. Sci. Eng. A319-321 (2001), p.862.

Google Scholar

[11] P. Kumar, C. Xu, T.G. Langdon, Mater. Sci. Eng. A410-411 (200, p.447.

Google Scholar

[12] P. Kumar, C. Xu, T.G. Langdon, Mater. Sci. Eng. A429 (2006), p.324.

Google Scholar

[13] N.Q. Chinh, J. Gubicza, Zs. Kovács, J. Lendvai. J Mater. Res. 19 (2004), p.31.

Google Scholar

[14] N.Q. Chinh, P. Szommer, T. Csanádi, T.G. Langdon, Mater. Sci. Eng. A434 (2006), p.326.

Google Scholar

[15] S.D. Terhune, D.L. Swisher, K. Oh-ishi, Z. Horita, T.G. Langdon, T.R. McNelley, Metall. Mater. Trans. 33A (2002), p.2173.

DOI: 10.1007/s11661-002-0049-x

Google Scholar

[16] C. Xu, M. Furukawa, Z. Horita, T.G. Langdon, Mater. Sci. Eng. A398 (2005), p.66.

Google Scholar

[17] T.G. Langdon, Mater. Sci. Eng. A174 (1994), p.225.

Google Scholar

[18] T.G. Langdon, J. Mater. Sci. 41 (2006), p.597.

Google Scholar

[19] T. G. Langdon, J. Mater. Sci. 42 (2007), p.1782.

Google Scholar

[20] H.J. Frost, M. F Ashby: Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics. Pergamon Press, Oxford, UK (1982).

Google Scholar

[21] H. Mehrer (ed. ), Diffusion in Solid Metals and Alloys. Landolt-Börnstein, Vol. 26 (Springer, Berlin etc., 1990).

Google Scholar

[22] I. Kaur, W. Gust, L. Kosma, Handbook of interphase and grain boundary diffusion (Ziegler press, Stuttgart, 1989).

Google Scholar