Mechanical Properties of an Al-5.4%Mg-0.5%Mn-0.1%Zr Alloy Subjected to ECAP and Rolling

Article Preview

Abstract:

Superplasticity and microstructural evolution of a commercial Al-5.4%Mg-0.5%Mn-0.1%Zr alloy subjected to severe plastic deformation through equal-channel angular pressing (ECAP) and subsequent rolling was studied in tension at strain rates ranging from 1.4×10-4 to 5.6×10-2 s-1 in the temperature interval 400-550°C. The alloy had an unrecrystallized microstructure with an average crystallite size less than 5 m. The alloy exhibited the yield strength of ~370 MPa, ultimate strength of ~450 MPa and elongation-to-failure of ~15% at ambient temperature. In spite of small crystallite size the alloy shows moderate superplastic properties. The highest elongation-to-failures of ~450% appeared at a temperature of ~500°C and an initial strain rate of ~1.4×10-3 s-1, where the strain rate sensitivity coefficient, m, is of about 0.57. The relationship between superplastic ductilities and microstructure is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 667-669)

Pages:

815-820

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. H. Chohshi, A. K. Mukherjee and T. G. Langdon: Mater. Sci. Eng R10 (1996), p.237.

Google Scholar

[2] A. Kipelova, I. Nikulin, S. Malopheyev and R. Kaibyshev: Proceedings of the 12th International Conference on Aluminium Alloys, Japan Institute of Light Metals, Japan (2010), p.2174.

Google Scholar

[3] F. J. Humphreys, P. B. Prangnell, J. R. Bowen, A. Gholinia and C. Harris: Phil. Trans. R. Soc. Lond. A 357 (1999), p.1663.

Google Scholar

[4] S. Komura, Z. Horita, M. Furukawa, M. Nemoto and T.G. Langdon: Metall. Trans. A, Vol. 32A (2001), p.707.

Google Scholar

[5] S. Lee, P. B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, N. K. Tsenev, R. Z. Valiev and T. G. Langdon: Mater. Sci. Eng., Vol. A272(1999), p.63.

Google Scholar

[6] R. Z. Valiev, D. A. Salimonenko, N. K. Tsenev, P. B. Berbon and T. G. Langdon: Scr. Mater., Vol. 37 (1997), p. (1945).

Google Scholar

[7] F. F. Musin, R. O. Kaibyshev, Y. Motohashi, T. Sakuma and G. Itoh: Mater. Trans., Vol. 43 (2002), p.2370.

Google Scholar

[8] Z. Horita, M. Furukawa, M. Nemoto and T. G. Langdon: Mater. Sci. Tech. 16 (2002), p.1239.

Google Scholar

[9] J. Pilling and N. Ridley: Superplasticity in Crystalline Solids, The Institute of Metals, London, (1989).

Google Scholar

[10] O. A. Kaibyshev: Superplasticity of Alloy, Intermetallics and Ceramics, Springer-Verlag, Berlin, (1992).

Google Scholar

[11] R. C. Rice, J. L. Jackson, J. Bakuckas and S. Thompson: Metallic Materials Properties Development and Standartization (MMPDS) (2003), p.1728.

Google Scholar