Enhancing Strength and Maintaining Ductility of Mg-3%Li-1%Sc Alloy by Equal Channel Angular Pressing

Article Preview

Abstract:

Equal channel angular pressing (ECAP) has been conducted on as-cast Mg-3%Li-1%Sc alloy for four-passes to study the microstructure uniformity and tensile properties. After ECAP, the microstructure become muddled, contains about 65% of deformed coarse grains with abundant low angle grain boundaries and about 35% of recrystallized small grains. Meanwhile, a strong basal texture is formed in the ECAP sample. The texture type of the recrystallized grains and the deformed grains are the same, however, the texture strength of the recrystallized grains is much lower than the deformed ones. Tensile strength is improved effectively and the elongation is maintained after ECAP. The increment of strength results from the microstructure refinement and residual dislocations produced by ECAP, while the recovery of ductility may be attributed to a shear type texture formed in the alloy during ECAP.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 667-669)

Pages:

839-844

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.L. Mordike, T. Ebert, Mater. Sci. Eng. A, 302 (2001) 37-45.

Google Scholar

[2] K. Kubota, M. Mabuchi, K. Higashi, J. Mater. Sci., 34 (1999) 2255-2262.

Google Scholar

[3] H. Haferkamp, M. Niemeyer, R. Boehm, U. Holzkamp, C. Jaschik, V. Kaese, Mater. Sci. Forum, 350-351 (2000) 31-42.

DOI: 10.4028/www.scientific.net/msf.350-351.31

Google Scholar

[4] A. Sanschagrin, R. Tremblay, R. Angers, D. Dube, Mater. Sci. Eng. A, 220 (1996) 69-77.

Google Scholar

[5] S. Kamado, T. Ashie, Y. Ohshima, Y. Kojima, Tensile properties and formability of Mg-Li alloys grain-refined by ECAE process, in: Magnesium Alloys 2000, 2000, pp.55-62.

DOI: 10.4028/www.scientific.net/msf.350-351.55

Google Scholar

[6] R.Z. Valiev, T.G. Langdon, Prog. Mater Sci., 51 (2006) 881-981.

Google Scholar

[7] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater Sci., 45 (2000) 103-189.

Google Scholar

[8] S. Qu, X.H. An, H.J. Yang, C.X. Huang, G. Yang, Q.S. Zang, Z.G. Wang, S.D. Wu, Z.F. Zhang, Acta Materialia, 57 (2009) 1586-1601.

Google Scholar

[9] S.R. Agnew, J.A. Horton, T.M. Lillo, D.W. Brown, Scripta Mater., 50 (2004) 377-381.

Google Scholar

[10] T. Liu, Y.D. Wang, S.D. Wu, R.L. Peng, C.X. Huang, C.B. Jiang, S.X. Li, Scripta Mater., 51 (2004) 1057-1061.

Google Scholar

[11] H.K. Lin, J.C. Huang, T.G. Langdon, Mater. Sci. Eng. A, 402 (2005) 250-257.

Google Scholar

[12] Y. Xu, H.J. Yang, M.A. Meyers, Scripta Materialia, 58 (2008) 691-694.

Google Scholar

[13] H. Yang, Y. Xu, Y. Seki, V.F. Nesterenko, M.A. Meyers, Journal of Materials Research, 24 (2009) 2617-2627.

Google Scholar

[14] H. Yang, S. Yin, C. Huang, Z. Zhang, S. Wu, S. Li, Y. Liu, Advanced Engineering Materials, 10 (2008) 955-960.

Google Scholar

[15] Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, T.G. Langdon, Scripta Mater., 35 (1996) 143-146.

Google Scholar

[16] Y.N. Wang, J.C. Huang, Mater. Chem. Phys., 81 (2003) 11-26.

Google Scholar

[17] S.R. Agnew, P. Mehrotra, T.M. Lillo, G.M. Stoica, P.K. Liaw, Acta Materialia, 53 (2005) 3135-3146.

DOI: 10.1016/j.actamat.2005.02.019

Google Scholar