Near-Threshold Fatigue Crack Propagation in an ECAP-Processed Ultrafine-Grained Aluminium Alloy

Article Preview

Abstract:

In the present work, the near-threshold fatigue crack propagation (FCP) at different load ratios is studied for an aluminium alloy processed by equal-channel angular pressing (ECAP). The conditions under investigation represent different stages of microstructural refinement as well as a ductility-optimized condition with superior crack growth properties, obtained by a combination of ECAP and aging. The results show a strong dependency of the threshold and its load ratio sensitivity on the grain size and grain size distribution. These observations can be rationalized on the basis of crack path tortuosity and the contribution of (roughness-induced) crack closure. Moreover, the experimental data is evaluated using the two-parametric concept of Vasudevan and Sadananda, which employs two necessary minimum conditions for crack growth, namely a critical cyclic K*th, and a critical maximum stress intensity K*max. The application of this concept shows a strong interaction of both parameters for all ECAP-processed conditions, where the ductility-optimized condition reveals superior FCP properties compared to the “as-processed” conditions.

You might also be interested in these eBooks

Info:

[1] A. Vinogradov: J. Mater. Sci. 42 (2007), p.1797.

Google Scholar

[2] Y. Estrin and A. Vinogradov: Int. J. Fatigue 32 (2010), p.898.

Google Scholar

[3] H.W. Höppel: Mater. Sci. Forum Vol. 503-504 (2006), p.259.

Google Scholar

[4] H.J. Maier, P. Gabor, N. Gupta, I. Karaman and M. Haouaoui: Int. J. Fatigue 28 (2006), p.243.

Google Scholar

[5] L.W. Meyer, K. Sommer, T. Halle and M. Hockauf: Mater. Sci. Forum Vol. 584-586 (2008), p.815.

Google Scholar

[6] P.S. Pao, H.N. Jones, S.F. Cheng and C.R. Feng: Int. J. Fatigue 27 (2005), p.1164.

Google Scholar

[7] P. Hübner, R. Kiessling, H. Biermann, T. Hinkel, W. Jungnickel, R. Kawalla, H.W. Höppel and J. May: Metall. Mater. Trans. A 38 (2007), p. (1926).

DOI: 10.1007/s11661-007-9297-0

Google Scholar

[8] A.K. Vasudevan, K. Sadananda and N. Louat: Scr. Metall. Mater. 28 (1993), p.65.

Google Scholar

[9] A.K. Vasudevan and K. Sadananda: Metall. Mater. Trans. A 26 (1995), p.1221.

Google Scholar

[10] S.E. Stanzl-Tschegg, O. Plasser, E.K. Tschegg and A.K. Vasudevan: Int. J. Fatigue 21 (1999), p.255.

Google Scholar

[11] M.D. Chapetti, H. Miyata, T. Tagawa, T. Miyata and M. Fujioka: Int. J. Fatigue 27 (2005), p.235.

DOI: 10.1016/j.ijfatigue.2004.07.004

Google Scholar

[12] J.M. Barsom: Weld. Res. Council Bull. 194 (1974), p.1.

Google Scholar

[13] R. E. Barber, T. Dudo, P.B. Yasskin and K.T. Hartwig: Scr. Mater. 51 (2004), p.373.

Google Scholar

[14] Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials, ASTM E399-90, ASTM, Philadelphia, PA, (1997).

DOI: 10.1520/stp33670s

Google Scholar

[15] M. Hockauf, L.W. Meyer, T. Halle, C. Kuprin, M. Hietschold, S. Schulze and L. Krüger: Int. J. Mater. Res. 97 (2006), p.1392.

DOI: 10.3139/146.101383

Google Scholar

[16] M. Hockauf, L.W. Meyer, B. Zillmann, M. Hietschold, S. Schulze and L. Krüger: Mater. Sci. Eng., A 503(2009), p.167.

Google Scholar

[17] E. Hornbogen and K. -H. Zum Gahr: Acta Metall. 24 (1976), p.581.

Google Scholar

[18] R. Carter, E. Lee, E. Starke and C. Beevers: Metall. Mater. Trans. A 15 (1984), p.555.

Google Scholar

[19] H.J. Roven, M. Liu and J.C. Werenskiold: Mater. Sci. Eng., A 483-484 (2008), p.54.

Google Scholar

[20] M. Cai, D.P. Field and G.W. Lorimer: Mater. Sci. Eng., A 373 (2004), p.65.

Google Scholar

[21] A.K. Vasudevan, K. Sadananda and K. Rajan: Int. J. Fatigue 19 (1997), p.151.

Google Scholar