[1]
K. Yasumoto (ed. ), Electromagnetic Theory and Applications for Photonic Crystals, Boca Raton, FL: CRC Press, (2006).
Google Scholar
[2]
D. Sievenpiper, L. Zhang, F. J. Boas, N. G. Alexópoulos, E. Yablonovitch, High-impedance electromagnetic surfaces with a forbidden frequency band, IEEE Trans. MTT, vol. 47, no. 11, pp.2059-2074, Nov. (1999).
DOI: 10.1109/22.798001
Google Scholar
[3]
H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Berlin, Germany: Springer Verlag, (1988).
DOI: 10.1007/bfb0048319
Google Scholar
[4]
D. Sievenpiper, E. Yablonovitch, Circuit and method for eliminating surface currents on metals, US Patent 60/07/79953, Mar. 30, (1998).
Google Scholar
[5]
D. Sievenpiper, High Impedance Electromagnetic Surfaces, Ph. D. dissertation, Dept. Elect. Eng., Univ. California at Los Angeles, Los Angeles, CA, (1999).
Google Scholar
[6]
F. L. Teixera, Closed-form metamaterials blueprints for electromagnetic masking of arbitrarily shaped convex PEC objects, IEEE Antennas Wireless Propag. Lett., vol. 6, pp.163-164, (2007).
DOI: 10.1109/lawp.2007.894153
Google Scholar
[7]
D. Sievenpiper, J. Colburn, B. Fong, J. Ottusch, J. Vishar, Holographic artificial impedance surfaces for conformal antennas, in Proc. Digest IEEEAPS/URSI Symp., Washington DC, vol. 1B, pp.256-259, Jul. (2005).
DOI: 10.1109/aps.2005.1551536
Google Scholar
[8]
J. McVay, A. Hoorfar, N. Engheta, Peano high-impedance surfaces, Radio Sci., 40, RS6S03, (2005).
DOI: 10.1029/2004rs003197
Google Scholar
[9]
J. McVay, N. Engheta, A. Hoorfar: High Impedance Meta-material Surfaces Using Hilbert-Curve Inclusions, IEEE Microwave and Wireless Components Lett., vol. 14, no. 3, pages 130-132, March (2004).
DOI: 10.1109/lmwc.2003.822571
Google Scholar
[10]
L. Matekovits, G. C. Vietti Colomé, M. Orefice, Controlling the bandlimits of TE-surface wave propagation along a modulated microstrip-line-based high impedance surface, IEEE Trans. Ant. Prop., vol. 56, no. 8, pp.2555-2562, Aug. (2008).
DOI: 10.1109/tap.2008.927524
Google Scholar
[11]
A. Vallecchi, M. Albani and F. Capolino, Planar Metamaterial Transverse Equivalent Network and Its Application to Low-Profile Antenna Designs, Proc. 3rd European Conference on Antennas and Propagation EUCAP09, pp.861-865.
Google Scholar
[12]
F. Elek, G. V. Eleftheriades, Dispersion analysis of the shielded Sievenpiper structure using multiconductor Transmission-Line theory, IEEE Microwave and Wireless Components Letters, vol. 14, no. 9, pp.434-436, (2004).
DOI: 10.1109/lmwc.2004.832075
Google Scholar
[13]
E. Rajo-Iglesias, M. Caiazzo, L. Inclán-Sánchez, P. -S. Kildal, Comparison of bandgaps of mushroom-type EBG surface and corrugated and strip-type soft surfaces, IET Microw. Antennas Propag., 1, (I), pp.184-189, (2007).
DOI: 10.1049/iet-map:20050327
Google Scholar
[14]
E. Rajo-Iglesias, P. -S. Kildal, Cut-off bandwidth of metamaterial-based parallel plate gap waveguide with one textured metal pin surface, Proc. 3rd European Conference on Antennas and Propagation EUCAP09, pp.33-36, March 2009, Berlin, Germany.
Google Scholar
[15]
Microwave Studio 2009, Computer Simulation Technology.
Google Scholar
[16]
T. Weiland, A discretization method for the solution of Maxwell's equations for sixcomponents fields, Electronics and Communication (AEÜ), vol. 31, pp.116-120, (1977).
Google Scholar
[17]
T. Weiland, M. Timm, I. Munteanu, A practical guide to 3-D simulation, Microwave Magazine, vol. 9, no. 6, pp.62-75, Dec. (2008).
DOI: 10.1109/mmm.2008.929772
Google Scholar
[18]
L. Brioullin, Wave Propagation in Periodic Structures, New York: Dover, (1953).
Google Scholar