Analysis of the Gap Bandwidth of some High Impedance Surfaces in the Microwave Range

Article Preview

Abstract:

This work numerically explores the relations between the positions and the widths of the frequency bandgaps that occur in some shielded high impedance surfaces and the geometrical dimensions of the structures. The reported parameterized results are useful for design issues and for circuit models conception and validation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

497-503

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Yasumoto (ed. ), Electromagnetic Theory and Applications for Photonic Crystals, Boca Raton, FL: CRC Press, (2006).

Google Scholar

[2] D. Sievenpiper, L. Zhang, F. J. Boas, N. G. Alexópoulos, E. Yablonovitch, High-impedance electromagnetic surfaces with a forbidden frequency band, IEEE Trans. MTT, vol. 47, no. 11, pp.2059-2074, Nov. (1999).

DOI: 10.1109/22.798001

Google Scholar

[3] H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Berlin, Germany: Springer Verlag, (1988).

DOI: 10.1007/bfb0048319

Google Scholar

[4] D. Sievenpiper, E. Yablonovitch, Circuit and method for eliminating surface currents on metals, US Patent 60/07/79953, Mar. 30, (1998).

Google Scholar

[5] D. Sievenpiper, High Impedance Electromagnetic Surfaces, Ph. D. dissertation, Dept. Elect. Eng., Univ. California at Los Angeles, Los Angeles, CA, (1999).

Google Scholar

[6] F. L. Teixera, Closed-form metamaterials blueprints for electromagnetic masking of arbitrarily shaped convex PEC objects, IEEE Antennas Wireless Propag. Lett., vol. 6, pp.163-164, (2007).

DOI: 10.1109/lawp.2007.894153

Google Scholar

[7] D. Sievenpiper, J. Colburn, B. Fong, J. Ottusch, J. Vishar, Holographic artificial impedance surfaces for conformal antennas, in Proc. Digest IEEEAPS/URSI Symp., Washington DC, vol. 1B, pp.256-259, Jul. (2005).

DOI: 10.1109/aps.2005.1551536

Google Scholar

[8] J. McVay, A. Hoorfar, N. Engheta, Peano high-impedance surfaces, Radio Sci., 40, RS6S03, (2005).

DOI: 10.1029/2004rs003197

Google Scholar

[9] J. McVay, N. Engheta, A. Hoorfar: High Impedance Meta-material Surfaces Using Hilbert-Curve Inclusions, IEEE Microwave and Wireless Components Lett., vol. 14, no. 3, pages 130-132, March (2004).

DOI: 10.1109/lmwc.2003.822571

Google Scholar

[10] L. Matekovits, G. C. Vietti Colomé, M. Orefice, Controlling the bandlimits of TE-surface wave propagation along a modulated microstrip-line-based high impedance surface, IEEE Trans. Ant. Prop., vol. 56, no. 8, pp.2555-2562, Aug. (2008).

DOI: 10.1109/tap.2008.927524

Google Scholar

[11] A. Vallecchi, M. Albani and F. Capolino, Planar Metamaterial Transverse Equivalent Network and Its Application to Low-Profile Antenna Designs, Proc. 3rd European Conference on Antennas and Propagation EUCAP09, pp.861-865.

Google Scholar

[12] F. Elek, G. V. Eleftheriades, Dispersion analysis of the shielded Sievenpiper structure using multiconductor Transmission-Line theory, IEEE Microwave and Wireless Components Letters, vol. 14, no. 9, pp.434-436, (2004).

DOI: 10.1109/lmwc.2004.832075

Google Scholar

[13] E. Rajo-Iglesias, M. Caiazzo, L. Inclán-Sánchez, P. -S. Kildal, Comparison of bandgaps of mushroom-type EBG surface and corrugated and strip-type soft surfaces, IET Microw. Antennas Propag., 1, (I), pp.184-189, (2007).

DOI: 10.1049/iet-map:20050327

Google Scholar

[14] E. Rajo-Iglesias, P. -S. Kildal, Cut-off bandwidth of metamaterial-based parallel plate gap waveguide with one textured metal pin surface, Proc. 3rd European Conference on Antennas and Propagation EUCAP09, pp.33-36, March 2009, Berlin, Germany.

Google Scholar

[15] Microwave Studio 2009, Computer Simulation Technology.

Google Scholar

[16] T. Weiland, A discretization method for the solution of Maxwell's equations for sixcomponents fields, Electronics and Communication (AEÜ), vol. 31, pp.116-120, (1977).

Google Scholar

[17] T. Weiland, M. Timm, I. Munteanu, A practical guide to 3-D simulation, Microwave Magazine, vol. 9, no. 6, pp.62-75, Dec. (2008).

DOI: 10.1109/mmm.2008.929772

Google Scholar

[18] L. Brioullin, Wave Propagation in Periodic Structures, New York: Dover, (1953).

Google Scholar