Comparative Study of Al/TiB2 Composites Manufactured by Underwater and Direct Shock Wave Consolidation

Article Preview

Abstract:

Aluminum matrix composites containing of 10, 20 and 30 vol% TiB2 particles were compacted by underwater and direct shock wave consolidation methods. SEM and Optical Microscopic examination, hardness and bending strength measurements were used to characterize the samples. It is observed that there were different distributions of TiB2 particles in recovered compacts by each method. In the direct method, the distribution of TiB2 particles at the center and at the periphery of the sample was different whereas in the underwater method there was a uniform microstructure in the sample. The microhardness of the compacts increased with increasing TiB2 particle volume fraction in both methods. The results showed highest bending strength for the composite containing 20 vol% TiB2 particles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

231-236

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Noguchi, K. Takahashi, Key Eng. Mater, Vol. 127-131(1997), p.53.

Google Scholar

[2] B. Maruyama, Adv. Mater. Processes (1999), p.6.

Google Scholar

[3] T. S. Srivatsan, E. J. Lavernia, J. Mater. Sci., 27(1992), p.5965.

Google Scholar

[4] L. Wang, R. Arsenault,J. Metall. Trans. A22 (1991), p.3013.

Google Scholar

[5] R. G. Munro, J. Res. Natl. Inst. Stand. Technol. Vol. 105 (2000), p.709.

Google Scholar

[6] F. Olevsky, P. mogilevsky, E. Y. Gutmanas, I. Gotman, Metall. Trans. A 27A (1996), p. (2071).

Google Scholar

[7] M. Oehering, T. Pfullmann and R. Bormann, Mater. Sci. Forum, Vol. 179(1995), p.435.

Google Scholar

[8] R. A. Prummer, G. Ziegler, Powder Metall. Int., 9(1)(1985), p.1035.

Google Scholar

[9] N. N. Thadani, Adv. Mater. Manuf. Proc., 3(4)(1988), p.49.

Google Scholar

[10] K. Sivakumar, Y. R. Mahajan. and V. V. Bhahu Prasad, J. Powder. Metall. 28(1992), p.63.

Google Scholar

[11] K. Hokamoto, J. S. Lee, M. Fujita, S. Itoh, K. Raghukandan, Mater. Sci. 37(2002), p.4073.

Google Scholar

[12] K. Sivakumar, T. Balakrishna and K. Hokamoto, J. Mater. Process. Technol., (2001), p.396.

Google Scholar

[13] K. Sivakumar, K. Hokamoto, S. Nakano and M. Fujita, in shock-wave and high strain-rate phenomena, K. P. Staudhammer, and M.A. Meyers(Eds). Elsevier, New York, (2001), p.313.

Google Scholar

[14] H. Eskandari, K. Hokamoto, H. M. Ghasemi and M. Emamy, S. Borji, J. S. Lee, Mater. Sci. Forum, Vols. 465-466(2004), p.433.

DOI: 10.4028/www.scientific.net/msf.465-466.433

Google Scholar

[15] H. Eskandari, H. M. Ghasemi and M. Emamy, Mater. Sci. Forum, Vols. 465 (2004), p.213.

Google Scholar

[16] K. Hokamoto, K. Raghukandan, J. S. Lee, M. Fujita and R. Tomoshige, Mater. Sci. Forum, Vol. 437-438(2003), p.169.

DOI: 10.4028/www.scientific.net/msf.437-438.169

Google Scholar

[17] S. Itoh, S. Kubota, A. Kira, S. Nagano and M. Fujita, J. Japan Explosives Soc., Vol. 55(1994), p.71.

Google Scholar

[18] M. Gupta, Aluminum Transactions, Vol. 1, No 1 (1999), p.33.

Google Scholar

[19] D. L. McDanels, Metall. Trans. A, Vol. 16 (1985), p.1105.

Google Scholar

[20] J. W. Luster, M. Thumann and R. Baumann, Mater. Sci. and Tech., Vol. 9 (1993), p.862.

Google Scholar

[21] R. Prummer: Fundamental Issues and Application of Shock Wave and High-Strain-Rate Phenomena (2001), p.235.

Google Scholar

[22] K. Sivakumar and K. Hokamoto, J. Mater. Sci., Vol. 35(2000), p.5823.

Google Scholar