Experimental Study in H2/CO/CH4-Air and H2/CO/C3H8-Air Premixed Flames. Part 1: Laminar Burning Velocities and Markstein Lengths

Article Preview

Abstract:

Flame propagation characteristics of hydrogen/carbon monoxide/methane (or propane)–air premixed mixtures were studied in a constant pressure combustion chamber with a schlieren system at room temperature and elevated pressures. Unstretched laminar burning velocities and Markstein lengths of various mixtures were obtained by analyzing high-speed schlieren images. Also, the experimentally measured unstretched laminar burning velocities were compared with numerical predictions using the PREMIX code with a H2/CO/C1–C4 mechanism, USC Mech II, developed by Wang et al. [23]. The two data from experiments and predictions show good agreement. The results indicate a significant increase in the unstretched laminar burning velocities with hydrogen enrichment and a decrease with the addition of hydrocarbons, whereas the opposite effects for the Markstein lengths were observed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-70

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Park, S.I. Keel, J.H. Yun, T.K. Kim: Int. J. Hydrogen Energy Vol. 32 (2007), p.4059.

Google Scholar

[2] X.J. Gu, M.Z. Haq, M. Lawes, R. Woolley: Combust. Flame Vol. 121 (2000), p.41.

Google Scholar

[3] D. Bradley, P.H. Gaskell, X.J. Gu: Combust. Flame Vol. 104 (1996), p.176.

Google Scholar

[4] K.T. Aung, M.I. Hassan, G.M. Faeth: Combust. Flame Vol. 112 (1998), p.1.

Google Scholar

[5] O.C. Kwon, G.M. Faeth: Combust. Flame Vol. 124 (2001), p.590.

Google Scholar

[6] C.K. Law, O.C. Kwon: Int. J. Hydrogen Energy Vol. 29 (2004), p.867.

Google Scholar

[7] E. Hu, Z. Huang, J. He, C. Jin, J. Zheng: Int. J. Hydrogen Energy Vol. 34 (2009), p.4876.

Google Scholar

[8] E. Hu, Z. Huang, J. He, J. Zheng, H. Miao: Int. J. Hydrogen Energy Vol. 34 (2009), p.5574.

Google Scholar

[9] H. Miao, Q. Jiao, Z. Huang, D. Jiang: Int. J. Hydrogen Energy Vol. 33 (2008), p.3876.

Google Scholar

[10] J. Park, D.H. Lee, S.H. Yoon, T.M. Vu, J.H. Yun, S.I. Keel: Int. J. Hydrogen Energy Vol. 34 (2009), p.1578.

Google Scholar

[11] F.N. Egolfopoulos, D.L. Zhu, C.K. Law: Proc. Combust. Inst. Vol. 23 (1990), p.471.

Google Scholar

[12] C.M. Vagelopoulos, F.N. Egolfopoulos, C.K. Law: Proc. Combust. Inst. Vol. 25 (1994), p.1341.

Google Scholar

[13] K.J. Bosschaart, L.P.H. De Goey: Combust. Flame Vol. 132 (2003), p.170.

Google Scholar

[14] F.H.V. Coppens, J. De Ruyck, A.A. Konnov: Combust. Flame Vol. 149 (2007), p.409.

Google Scholar

[15] D. Bradley, R.A. Hicks, M. Lawes, C.G.W. Sheppard, R. Woolley: Combust. Flame Vol. 115 (1998), p.126.

Google Scholar

[16] C.J. Sun, C.J. Sung, L. He, C.K. Law: Combust. Flame Vol. 118 (1999), p.108.

Google Scholar

[17] C. Prathap, A. Ray, M.R. Ravi: Combust. Flame Vol. 155 (2008), p.145.

Google Scholar

[18] L.K. Tseng, M.A. Ismail, G.M. Faeth: Combust. Flame Vol. 95 (1993), p.410.

Google Scholar

[19] P. Clavin: Prog. Energy Combust. Sci. Vol. 11 (1985), p.1.

Google Scholar

[20] C.K. Law, C.J. Sung: Prog. Energy Combust. Sci. Vol. 26 (2000), p.459.

Google Scholar

[21] F.A. Williams: in Combustion theory, 2nd ed. Redwood City, CA: Addison-Wesley; (1985).

Google Scholar

[22] R.J. Kee, J.F. Grcar, M.D. Smooke, J.A. Miller: Report No. SAND85-8240, Sandia National Laboratories, (1993).

Google Scholar

[23] H. Wang, X. You, A.V. Joshi, S.G. Davis, A. Laskin, F. Egolfopoulos, C.K. Law: Available at <http: /ignis. usc. edu/USC_Mech_II. htm>.

Google Scholar