Antiferromagnetic Layer Thickness Dependence of Exchange Bias in Sputter-Deposited Co/CoO/Co Trilayer

Article Preview

Abstract:

We have used ferromagnet/antiferromagnet/ferromagnet sandwich structure to probe the antiferromagnetic layer thickness dependence of exchange bias in sputter-deposited Co/CoO/Co trilayer. The exchange coupling occurring at the upper ferromagnetic/antiferromagnetic interface is always found to be stronger than the one at the lower antiferromagnetic/ferromagnetic interface. The grain growth with increasing antiferromagnetic layer thickness can lead to a gradient of grain size distribution through the whole antiferromagnetic layer. Consequently, the relatively large grains at the upper interface would results in a rougher interface which we treat as structural defects and can significantly enhance exchange bias through domain state model. The slightly decrease of exchange coupling with increasing antiferromgnetic layer thickness indicates that the exchange bias is only governed by the grains that are thermally stable but whose anisotropy energy is low enough to be set.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 675-677)

Pages:

1263-1266

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. H. Meiklejohn and C. P. Bean: Phys. Rev. Vol. 102 (1956), p.1413.

Google Scholar

[2] J.C.S. Kools: IEEE Trans. Magn. Vol. 32 (1996), p.3165.

Google Scholar

[3] B.N. Engel, J. Akerman, B. Butcher, R.W. Dave, M. DeHerrera, M. Durlam, G. Grynkewich, J. Janesky, S.V. Pietambaram, N.D. Rizzo, J.M. Slaughter, K. Smith, J.J. Sun, S. Tehrani: IEEE Trans. Magn. Vol. 41 (2005), p.132.

DOI: 10.1109/tmag.2004.840847

Google Scholar

[4] S.S.P. Parkin, X. Jiang, C. Kaiser, A. Panchula, K. Roche, M. Samant: Proc. IEEE Vol. 91 (2003), p.661.

DOI: 10.1109/jproc.2003.811807

Google Scholar

[5] D. Mauri, H. C. Siegmann, P. S. Bagus, and E. Kay: J. Appl. Phys. Vol. 62 (1987), p.3047.

Google Scholar

[6] A. P. Malozemoff: J. Appl. Phys. Vol. 63 (1988), p.3874.

Google Scholar

[7] N. C. Koon: Phys. Rev. Lett. Vol. 78 (1997), p.4865.

Google Scholar

[8] D. G. Hwang, S. S. Lee, and C. M. Park: Appl. Phys. Lett. Vol. 72 (1998), p.2162.

Google Scholar

[9] C. M. Park, I. Min, and K. H. Shin: J. Appl. Phys. Vol. 79 (1996), p.6228.

Google Scholar

[10] M. R. Ghadimi, B. Beschoten, and G. Guntherodt: Appl. Phys. Lett. Vol. 87 (2005), p.3.

Google Scholar

[11] B. T. Bolon, M. A. Haugen, A. Abin-Fuentes, J. Deneen, C. B. Carter, and C. Leighton: J. Magn. Magn. Mater. Vol. 309, (2007), p.54.

Google Scholar

[12] K. O'Grady, L. E. Fernandez-Outon, and G. Vallejo-Fernandez: J. Magn. Magn. Mater. Vol. 322 (2010), p.883.

Google Scholar