Effect of the Si3N4 Coating on the Mc-Si Ingot in the Process of Multicrystalline Silicon Purification by Metallurgical Methods

Article Preview

Abstract:

The Si3N4 protective coating has an important impact on avoiding melting silicon from contacting with the crucible wall directly. A mixed Si/Si3N4 layer was formed on the interface of silicon and Si3N4 coating, and the declination of N content was observed in this mixed layer. With the ingots condition of 1500oC for 2 h, the large Si3N4 and SiC particles appeared in the mixed layer and the formation mechanism was discussed. The Si3N4 coating had significantly increased the lifetime of minority carriers by decreasing impurity content.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 675-677)

Pages:

1311-1314

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Arafune, E. Ohishi, H. Sai, Y. Ohshita and M. Yamaguchi: J. Cryst Growth, Vol. 308 (2007), p.5.

Google Scholar

[2] A. A. Istratov, H. Hieslmair, E. R. Weber: J. Appl. Phys. A., Vol. 70 (2000), p.489.

Google Scholar

[3] D. R. Yang, L.B. Li and X.Y. Ma: Solar Energy Materials & Solar Cells, Vol. 62 (2000), p.37.

Google Scholar

[4] R. Kishore, J. L Pastol and G. Revel: Solar Energy Materials., Vol. 19 (1989), p.221.

Google Scholar

[5] Q. Sun, K. H. Yao and J. Iagowski: J. Appl. Phys. Vol. 67 (1990), p.4313.

Google Scholar

[6] P. Fraundorf, G. K. Fraundorf and F. Shimura: J. Appl phys., Vol. 58 (1985), p.4049.

Google Scholar

[7] H. J. Moller, C. Funke and A. Lawerenz: Solar Energy Materials & Solar Cells., Vol. 72 (2002), p.403.

Google Scholar

[8] J. Chen, T. Sekinuehi and S. Nara: J Phys Condensed Matter, Vol. 16 (2004), p.211.

Google Scholar

[9] Z. F. Yuan, K. Mukai: Journal of Colloid and Interface Science, Vol. 270 (2004), p.140.

Google Scholar

[10] F. Schmid, C.P. Khattak, T.G. Digges and L. Kaufmann: J. Electrochem. Soc., (1979), pp.126-935.

Google Scholar

[11] P.S. Ravishankar: J. Cryst. l Growth, Vol. 69 (1984), p.456.

Google Scholar

[12] R.C. Philip, V.J. Robert and N.J. Trenton: US Patent 2, 872, 299, (1959).

Google Scholar

[13] T.F. Ciszek: The Capillary Action Shaping Technique and its Application, (Springer-Verlag, Berlin 1981).

Google Scholar

[14] H.J. Moller, C. Funke, M. Rinio and S. Scholz: Thin Solid Films Vol. 487(2005), p.179.

Google Scholar

[15] Berkman, Samuel and Duffy: US Patent 4356152, (1982).

Google Scholar

[16] E. Paloura, K. Nauka and J. Lagowski: Appl. Phys. lett. Vol. 49 (1986), p.97.

Google Scholar

[17] M. Liu, Y. Tan, L.S. Wen and J.Y. Li: Materials Research Innovation, in press.

Google Scholar

[18] T. Buonassisia, A. A. Istratova , M. D. Picketta, J. -P. Rakotoniainab, O. Breitensteinb, M. A. Marcusc, S. M. Healdd, E. R. Webera: Journal of Crystal Growth Vol. 287 (2006) p.402.

Google Scholar

[19] V. Heine, C. Cheng, R. J. Needs: Am. Ceram. Soc. Vol. 74 (1991) p.2630.

Google Scholar

[20] J. Bauer, O. Breitenstein, J. P. Rakotoniaina: Phys. Stat. Sol. Vol. 204 (2007) p.2190.

Google Scholar

[21] J. Bauer, O. Breitenstein, M. Becker, in: Proceedings of the Seventh NREL Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes, USA (2007).

Google Scholar

[22] K. S. Nahm, K. C. Kim, K. Y. Lim: Electrochem. Soc., Vol. 148 (1998), p. G132.

Google Scholar

[23] C.V. Hari Rao, H. E. Bates, K.V. Ravi: J. Appl. Phys., Vol. 47 (1976), p.2614.

Google Scholar