Manufacture of Aluminum Nanocomposites: A Critical Review

Article Preview

Abstract:

In the last two decades, metal matrix nanocomposites have witnessed tremendous growth. Particulate-reinforced nanocomposites have been extensively employed in the automotive industry for their capability to withstand high temperature and pressure conditions. Several manufacturing approaches have been used to fabricate them. Non-homogeneous particle dispersion and poor interface bonding are the main drawbacks of conventional manufacturing techniques. A critical review of nanocomposite manufacturing processes is presented; the distinction between ex-situ and in-situ processes is discussed in some detail. Moreover, in-situ gas/liquid processes are elaborated and their advantages are discussed. The thermodynamics and kinetics of the reaction between the precursor gas and the liquid metal have been analyzed and their role on particle formation studied. This critical review will provide the reader with an overview of nanocomposite manufacturing methods along with a clear understanding of advantages and disadvantages.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-22

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Rawal: J. Mater. Vol. 53 (2001), pp.14-17.

Google Scholar

[2] Information on http: /www. secat. net/answers_view_article. php?article=Aluminum_Matrix_Composites. html.

Google Scholar

[3] Information on http: /www. almmc. com.

Google Scholar

[4] Information on http: /www. thefreelibrary. com/Increased aluminum in automobiles saving weight and fuel consumption-a0159786251.

Google Scholar

[5] A. Wielgat: Automot. Ind. (2002).

Google Scholar

[6] Information on http: /news. alibaba. com/article/detail/metalworking/100187048-1-metals- knowledge%253A-automotive-trends-aluminum%252C. html.

Google Scholar

[7] Information on http: /www. thefreelibrary. com/Justifying Aluminum Metal Matrix Composites in an Era of Cost Redution-a060015013.

Google Scholar

[8] M. El-Gallaba and M. Skladb: J. Mater. Process. Tech. Vol. 83 (1998), p.277–285.

Google Scholar

[9] S. Jahanmir, M. Ramulu and P. Koshy in: Machining of Ceramics and Composites, edited by CRC Press, (1999).

Google Scholar

[10] Mod. Cast. (September 2010), p.3.

Google Scholar

[11] P.E.C. Camargo, K. G. Satyanarayama and F. Wypych: Mater. Res. Vol. 12 (2009), pp.1-39.

Google Scholar

[12] S. M. Zebarjad, S. A. Sajjadi and E. Z. Vahid Karimi: Res. Lett. Mater. Sci. (2008), pp.1-4.

Google Scholar

[13] Information on http: /www. materials. unsw. edu. au/NanoWeb.

Google Scholar

[14] Information on scales. colorado. edu/classes/MCEN5208_F2004/.. /lit_Fischer. doc.

Google Scholar

[15] Information on http: /etd. lib. nsysu. edu. tw/ETD-db/ETD-search-c/view_etd?URN=etd-0717106-184541.

DOI: 10.20396/etd.v11iesp..895

Google Scholar

[16] Q. Zhang and D. L. Chen: Scripta Mater. Vol. 54 (2006), p.1321–1326.

Google Scholar

[17] M. Cournil, F. Gruy, P. Cugniet, P. Gardina and H. Saint-Raymond in Model of Aggregation of Solid Particles in Nonwetting Liquid Medium, Centre SPIN, URA CNRS 2021, Ecole Nationale Supérieure des Mines de Saint-Etienne.

Google Scholar

[18] Information on http: /www2. ocean. washington. edu/oc540/lec02-26.

Google Scholar

[19] G Cao, J. Kobliska, H. Konishi, and X. li: Metall. Mater. Trans. Vol. 39A (2008), pp.880-886.

Google Scholar

[20] S. Melis and A. Sorti: AIChE Journal Vol. 45 No. 7 (2009).

Google Scholar

[21] Rhonda Lee-Desautels: Educ. Reso. for Part. Techn. 051Q-Lee.

Google Scholar

[22] D. Bozic, M. Vilotijevic, V. Rajkovic and Z. Gnjidic: Mater. Sci. Forum Vol. 492 (2005), pp.487-492.

Google Scholar

[23] N. Matsunagaa, K. Nakahamaa, Y. Hiratab and S. Sameshimab: J. Ceram. Process. Res. Vol. 10 No. 3 (2009), pp.319-324.

Google Scholar

[24] S. Shamsudin, M. M. Wahid and S. Jamaludin: 1st International Conference on Sustainable Materials (ICoSM2007) (2007).

Google Scholar

[25] W. Zhou and Z. M. Xu: J. Mater. Process. Tech. Vol. 63 (1999), pp.358-363.

Google Scholar

[26] N.J. Fei, L. Katgerman and W. Kool: J. Mater. Sci. Vol. 29 No. 24 (1994), pp.6439-6444.

Google Scholar

[27] C. Tekmen, F. Saday, U. Cocen and L.Y. Ljungberg: J. Compos. Mater. Vol. 42 No. 16 (2008), pp.1671-1771.

Google Scholar

[28] R. Kolhe, C.Y. Hui, E. Ustundag and S.L. Sass: Acta Mater. Vol. 44 No. 1 (1999), pp.279-287.

Google Scholar

[29] S. Suresh, A. Mortensen and A. Needleman in Fundamentals of Metal Matrix Composites, edited by Buttleworth-Heinemann, (1993).

Google Scholar

[30] A. Evans, C. San Marchi and A. Mortensen in Metal Matrix Composites in Industry: An Introduction and a Survey, edted by Springer, (2003).

Google Scholar

[31] P. M. Ajayan, L. S. Schadler and P. V. Braun in Nanocomposite Science and Technology, edited by Wiley-VCH, (2003).

Google Scholar

[32] C. C. Koch in Nanostructured Materials: Processing, Properties, and Applications, edited by William Andrew, (2006).

Google Scholar

[33] A. Evans, C. San Marchi, A. Mortensen, Metal Matrix Composites in Industry: an Introduction and a Survey, Volume 1, Springer, (2003).

Google Scholar

[34] N. Chawla and K. Chawla in Metal Matrix Composites, edited by Birkhäuser, (2006).

Google Scholar

[35] N.K. Tolochko, A.A. Andrushevic and Yu A. Shienok: Adv. Mater. Res. Vols. 79-82 (2009), pp.425-428.

Google Scholar

[36] G. Cao in Nanostructures & Nanomaterials: Synthesis, Properties & Applications, edited by Imperial College Press, (2004).

Google Scholar

[37] Z.Y. Ma, Y.L. Lia, Y. Liang, L F. Zheng , J. BP and S.C. Tjong: Mat. Sci. Eng. Vol. A219 (1996), pp.229-231.

Google Scholar

[38] J. Peng, U.S. Patent 7, 297, 310 (2007).

Google Scholar

[39] C. L. De Castro and B. S. Mitchell in Synthesis, Functionalization and Surface Treatment of Nanoparticles, edted by American Scientific Publishers (2002).

Google Scholar

[40] D.L. Zhang, J. Liang and J. Wu: Mat. Sci. Eng. Vols. A375–377 (2004), p.911–916.

Google Scholar

[41] Information on http: /www. sigmaaldrich. com/etc/medialib/docs/Aldrich/Brochure/al_chemfile_v5_n3. Par. 0001. File. tmp/al_chemfile_v5_n3. pdf.

Google Scholar

[42] L. Xiaodan: TMS 2010 139th Annual Meeting and Exhibition, Supplemental Proceedings, Vol. 2, Materials Characterization, Computation, Modelling and Energy.

Google Scholar

[43] Y. Yang and X. Li: J. Manuf. Sci. Eng. Vol. 129 (2004), pp.497-501.

Google Scholar

[44] Y. Yang, J. Lan and X. Li: Mat. Sci. Eng. Vol. A380 (2004), pp.378-383.

Google Scholar

[45] Y. Yang, X. Li and X. Cheng: J. Mater. Sci. Vol. 39 (2004), pp.3211-3212.

Google Scholar

[46] P. Padhi, S.C. Panigrahi and S. Ghosh: AIF Conf. Proc. 1063 (2008), pp.371-375.

Google Scholar

[47] R. Ashtana in: Solidification Processing of Reinforced Metals, Trans. Tech Publications, (1997).

Google Scholar

[48] G. Kaptay in Proc. of the 2nd Int. Conf. High Temperature Capillarity, edited by N. Eustathopoulos and N. Sobczak, published by Foundry Research Institute, Cracow, Poland (1998), pp.388-393.

Google Scholar

[49] S. Gierlotka: Solid State Phenom. Vols. 101-102 (2005), pp.157-164.

Google Scholar

[50] B. F. Schultz: Ph. D, The University of Wisconsin – Milwakee (2009), 208 pages, 3363450.

Google Scholar

[51] Q. Zheng, B. Wu and R.G. Reddy: Adv. Eng. Mater. Vol. 5 No. 3 (2003), pp.167-173.

Google Scholar

[52] S.C. Tjong and Z.Y. Ma: Mater. Sci. Eng. Vol. 29 (2000), pp.49-113.

Google Scholar

[53] A.G. Merzhanov, A.S. Rogachev and A.E. Sychev: Dokl. Phys. Chem. Vol. 362 No. 1-3 (1998), pp.217-221.

Google Scholar

[54] Information on www. spaceflight. esa. int/.. /combustion. jpg.

Google Scholar

[55] C.M. Ward-Close, R. Minor and P.J. Doorbar: Intermetallics Vol. 4 (1996), pp.217-229.

Google Scholar

[56] J. Tu, N. Wang, Y. Yang and W. Qu: Mater. Lett. Vol. 52 No. 6 (2002), pp.448-452.

Google Scholar

[57] Y. Zhao, S. Zhang, G. Chen, X. Cheng and Q. Wang: Compos. Sci. and Techn. Vol. 68 (2008), pp.1453-1470.

Google Scholar

[58] Nam P. Suh Sutek Corporation, U.S. Patent 4278622 and 4279843 (1981).

Google Scholar

[59] Nam P. Suh Sutek Corporation, U.S. Patent 4, 706, 730 and 4, 890, 662 (1987).

Google Scholar

[60] Q. Zheng and R.G. Reddy: Metall. Mater. Trans. Vol. 34B (2003), pp.793-805.

Google Scholar

[61] Q. Zheng, B. Wu and R.G. Reddy: Adv. Eng. Mater. Vol. 5 No. 3 (2003), pp.167-173.

Google Scholar

[62] Q. Zheng and R.G. Reddy: J. Mater. Sci. Vol. 39 (2004), pp.141-149.

Google Scholar

[63] R. G. Reddy, US Patent 6, 343, 640 (2002).

Google Scholar

[64] R.F. Shyu, F.T. Weng and C.T. Ho: J. Mater. Process. Technol. Vol. 122 (2002), p.301–304.

Google Scholar

[65] R.F. Shyu and C.T. Ho: J. Mater. Process. Technol. Vol. 171 (2006), p.411–416.

Google Scholar

[66] M. Dyzia and J. Sleziona: Arch. Mater. Sci. Eng. Vol. 31 (2008), pp.17-20.

Google Scholar

[67] S. Tyagi, Q. Zheng and R. Reddy: Aluminum 2004, edited by S. K. Das, TMS, Warrandale, (2004), pp.63-72.

Google Scholar

[68] S. S. Nayak, B.S. Murty and S.K. Pabi: Bull. Mater. Sci. Vol. 31 No. 8 (2008), pp.249-254.

Google Scholar