Micro-Chemistry and Mechanical Behaviour of Ti6Al4V-SiCf Composite Produced by HIP for Aeronautical Applications

Article Preview

Abstract:

The paper reports the results of an extensive characterization of the Ti6Al4V-SiCf composite produced by hot isostatic pressing (HIP) to assess its capability to withstand the in-service conditions of turbine blades operating at middle temperatures in aeronautical engines. The microstructure of composite, in as-fabricated condition and after long-term heat treatments (up to 1,000 hours) in the temperature range 673-873 K, has been investigated by means of different techniques. Particular attention was paid to the micro-chemical evolution of fibre-matrix interface which is scarcely affected also by the most severe heat treatments examined here. This leads to stable mechanical properties as evidenced by hardness, tensile and FIMEC instrumented indentation tests. Therefore, the composite can operate at the maximum temperature (873 K) foreseen for its aeronautical applications without remarkable modifications of its microstructure and degradation of mechanical properties. The mechanical characterization has been completed by internal friction and dynamic modulus measurements carried out both at constant and increasing temperature, from 80 to 1173 K.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-47

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Arvieu, J.P. Manaud and J.M. Quenisset: J. Alloys Comp. Vol. 368 (2004), p.116.

Google Scholar

[2] Y.C. Fu, N.L. Shi, D.Z. Zhang and R. Yang: Mater. Sci. Eng. A Vol. 426 (2006), p.278.

Google Scholar

[3] G. Das: Metall. Trans. A Vol. 21A (1990), p.1571.

Google Scholar

[4] P. Martineau, R. Pailler, M. Lahaye and R. Naslain: J. Mater. Sci. Vol. 19 (1984), p.2749.

Google Scholar

[5] T.W. Clyne, in: 3. 7. 12. Metal Matrix Composites: Matrices and Processing , Encyclopaedia of Materials: Science and Technology", §3. 7"Composites: MMC, CMC, PMC, ed. A Mortensen, Elsevier, (2001), p.12.

Google Scholar

[6] M.A. Mittnick, in: Metal and Ceramic Matrix Composites 605, Proc. TMS annual meeting in Anaheim, CA, U.S.A., (1990) p.413.

Google Scholar

[7] S.V. Nair, J.K. Tien and R.C. Bates: Inter. Metals Rev. Vol. 30 (1985), p.275.

Google Scholar

[8] P.R. Smith and F.H. Froes: J. Met., Vol. 36 (1984), p.19.

Google Scholar

[9] P.D. Nicolau, S.L. Semiatin et al.: Scri. Met. et Mat, Vol. 32 (1995), p.57.

Google Scholar

[10] H.D. Hanes, D.A. Seifert and C.R. Watts, in: Hot Isostatic Pressing, Battelle Press, Columbus, OH, (1979), p.16.

Google Scholar

[11] S. Gunther, B. Kaulich, L. Gregoratti and M. Kiskinova: Prog. Surf. Sci. Vol. 70 (2002), p.187.

Google Scholar

[12] S. Malinov, W. Sha and Z. Guo, SRS Annual Reports (2000- 2001).

Google Scholar

[13] S. Malinov, W. Sha , Z. Guo, C.C. Tang and A.E. Long: Mater. Charact. Vol. 48 (2002), p.279.

Google Scholar

[14] H. Choo, P. Rangaswamy, M.A.M. Bourke and J.M. Larsen.: Mater. Sci. Eng. A Vol. 325 (2002), p.236.

Google Scholar

[15] R. Pederson, O. Babushkin, F. Skystedt and R. Warren: Mater. Sci. Tech. Vol. 19 (2003), p.1533.

Google Scholar

[16] E. Fromm and G. Horz: Inter. Metals Rev. Vol. 25 (1980), p.269.

Google Scholar

[17] R. Montanari , G. Costanza , M.E. Tata and C. Testani: Mater. Charact. Vol. 59 (2008), p.334.

Google Scholar

[18] J.F. Silvan, J.C. Bihr and Y. Lepetitcorps: Composites Vol. 27A (1996), p.691.

Google Scholar

[19] Y.C. Fu, N.L. Shi, D.Z. Zhang and R. Yang: Mater. Sci. Eng. A Vol. 426 (2006), p.278.

Google Scholar

[20] S. Kaciulis: Spettroscopia elettronica delle superfici, Tecniche sperimentali per la caratterizzazione dei materiali, ed. R. Montanari, Associazione Italiana Metallurgia (2005), p.103.

Google Scholar

[21] J.F. Moulder, W.F. Stickl, P.E. Sobol and K.D. Bomben, in: Handbook of X-ray Photoelectron Spectroscopy, Eden Prairie, Physical Electronics Inc., (1995) U.S. A.

Google Scholar

[22] K.D. Childs, B.A. Carlson , L.A. La Vanire, J.F. Moulder, D.F. Paul, W.F. Stickle, D.G. Watson, in: Handbook of Auger Electron Spectroscopy, Eden Prairie, Physical Electronics Inc. (1995)U.S. A.

Google Scholar

[23] R. Donnini, S. Kaciulis, A. Mezzi, R. Montanari and C. Testani: Surf. Interface Anal. Vol. 40 (2008), p.277.

DOI: 10.1002/sia.2644

Google Scholar

[24] S. Kaciulis, A. Mezzi, R. Donnini, P. Deodati, R. Montanari, N. Ucciardello, M. Amati, M. . Kazemian-Abyaneh and C. Testani, Surf. Interface Anal., Vol. 42 (2010) p.707.

DOI: 10.1002/sia.3219

Google Scholar

[25] M. Kiskinova, K. Marsi, E. Di Fabrizio, M. Gentili: Surf. Rev. Lett. Vol. 6(2) (1999), p.265.

Google Scholar

[26] M. Marsi, L. Casalis, L. Gregoratti, S. Gunther, A. Kolmakov, J. Kovac, D. Lonza, M. Kiskinova: J. Electron. Spectrosc. Vol. 84 (1-3) (1997), p.73.

DOI: 10.1063/1.52553

Google Scholar

[27] L.H. VanVlack, in: Elements of Materials Science and Engineering, Publ. Addison-Wesley (1985).

Google Scholar

[28] H.C. Swart, A.J. Jonker, C.H. Claassens, R. Chen, L.A. Venter, P. Ramoshebe, E. Wurth , J.J. Terblans and W.D. Roos: Appl. Surf. Sci. Vol. 205 (2003), p.231.

DOI: 10.1016/s0169-4332(02)01070-x

Google Scholar

[29] P. Gondi, R. Montanari and A. Sili: J. of Nucl. Mater. Vol. 212-215 (1994), p.1688.

Google Scholar

[30] P. Gondi, A. Donato, R. Montanari and A. Sili: J. of Nucl. Mater. Vol. 233-237 (1996), p.1557.

Google Scholar

[31] A. Donato, P. Gondi, R. Montanari, F. Moreschi, A. Sili and S. Storai: J. Nucl. Mater. Vol. 258-263 (1998), p.446.

DOI: 10.1016/s0022-3115(98)00428-0

Google Scholar

[32] B. Riccardi and R. Montanari: Mater. Sci. Eng. A 381, Vol. 1-2 (2004), p.281.

Google Scholar

[33] B.W. Christ, in Effect of Specimen Preparation, Setup and Test Procedures on Test Results, Metals Handbook, 9th ed., Vol. 8 (1985) p.32.

Google Scholar

[34] S. Amadori, E.G. Campari, A.L. Fiorini, R. Montanari, L. Pasquini, L. Savini and E. Bonetti: Mater. Sci. Eng. A Vol. 442 (2006), p.543.

DOI: 10.1016/j.msea.2006.02.210

Google Scholar

[35] R. Schaller: Mater. Sci. Eng. A Vol. 442 (2006), p.423.

Google Scholar

[36] L.H. He and C.W. Lim: Compos. Sci. Technol. Vol. 61 (2001), p.579.

Google Scholar

[37] R. Raj and M. Ashby: Metall. Trans. Vol. 2 (1971), p.1113.

Google Scholar

[38] M.H. Hou and R.F. Davies: J. Mater. Sci. Vol. 14-10 (1979), p.2411.

Google Scholar

[39] M.H. Hou, R.F. Davies and D.E. Newbury: J. Mater. Sci. Vol. 15-8 (1980), p. (2073).

Google Scholar

[40] M. Naka, J.C. Feng and J.C. Schuster: Metall. Mater. Trans. Vol. 28 A (1997), p.1385.

Google Scholar

[41] D. Gupta and S. Weining: Acta Metall. Vol. 10 (1962), p.292.

Google Scholar

[42] F. Povolo and E.A. Bisogni: Acta Metall. Vol. 14 (1966), p.711.

Google Scholar

[43] S. Amadori, E. Bonetti, P. Deodati, R. Donnini, R. Montanari, L. Pasquini and C. Testani: Mater. Sci. Eng. A Vol. 521-522 (2009), p.340.

DOI: 10.1016/j.msea.2008.09.156

Google Scholar

[44] R.J. Wasilewsky and G.L. Kehl: Metallurgia Vol. 50 (1954), p.225.

Google Scholar

[45] C. Korn and D. Teitel: Phys. Status Solidi A Vol. 44 (1977), p.755.

Google Scholar

[46] Du Jia Ju : J. Phys., C5 Vol. 42 (1981), p.775.

Google Scholar

[47] X.S. Guan, H. Numakura, M. Koiwa, K. Hasegawa and C. Ouchi: Mater. Sci. Eng. A Vol. 272 (1999), p.230.

Google Scholar

[48] G.F. Pittinato and W.D. Hanna: Met. Trans. Vol. 3 (1972), p.2905.

Google Scholar

[49] A.S. Nowick and B.S. Berry, in: Anelastic Relaxation in Crystalline Solids (Academic, New York, 1972), p.356.

Google Scholar