Effect of Mechanical Mould Vibration on Solidification Behaviour and Microstructure of A360-SiCp Metal-Matrix Composites

Article Preview

Abstract:

In this work the microstructural evolution of an A360 alloy reinforced with 10vol.% SiC particulate is described. During the material solidification, mechanical vibration, in the range of 0-41 times the gravity acceleration, g, has been applied to a steel die. It has been observed that vibrations can promote a quite homogeneous SiC dispersion on macroscopic scale. On the other hand, by using too high vibrations’ intensity, segregation phenomena have been pointed out in the castings. Furthermore, it has been evidenced that the reinforcement distribution is influenced by mechanical entrapment of the particles at grain boundaries and in the interdendritic channel. The metallographic analysis has emphasized a finer microstructure with increasing vibrations’ intensity. By comparing simulated and experimental temperature curves of the mould in the different cases, different HTC made the best fit. By increasing the vibrations’ intensity, the HTC increases in the temperature range of solidification of the composite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-114

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.U. Kainer, in: Basics of Metal Matrix Composites, edited by K.U. Kainer, Metal Matrix Composites, chapter 1, Wiley-VCH Verlag GmbH & Co., Weinheim (2006).

DOI: 10.1002/3527608117.ch1

Google Scholar

[2] B. Verlinden and L. Froyen, in: Aluminium Matrix Composite Materials, TALAT CD-ROM, Lecture 1402, , European Aluminium Association, Bruxelles (1999).

Google Scholar

[3] M.K. Surappa: J. Mater. Process. Technol. Vol. 63 (1997), p.325.

Google Scholar

[4] F. Pinna, in: Proc. Conf. Tecnologie Innovative nella Fonderia Leghe Leggere, Montichiari, Italy (1998).

Google Scholar

[5] P. Bassani, B. Previtali, A. Tuissi, M. Vedani, G. Vimercati and S. Arnaboldi: Metal. Sci. Tech. Vol. 23 (2005), p.3.

Google Scholar

[6] S. Arnaboldi, P. Bassani, M. Pini, A. Tuissi, M. Vedani and G. Vimercati: Metall. Ital. Vol. 98 (2007) p.19.

Google Scholar

[7] J. Hashim, L. Looney and M.S.J. Hashmi: J. Mater. Process. Technol. Vol. 92-93 (1999), p.1.

Google Scholar

[8] J. Hashim, L. Looney and M.S.J. Hashmi: J. Mater. Process. Technol. Vol. 123 (2002), p.252.

Google Scholar

[9] P.K. Rohatgi, R. Asthana and S. Das: Int. Met. Rev. Vol. 31 (1986), p.115.

Google Scholar

[10] A. Mortensen, V. Michaud and M.C. Flemings: J. Met. 45 (1993), p.36.

Google Scholar

[11] P.A. Karnezis, G. Durrant and B. Cantor : Mater. Charact. 40 (1998), p.97.

Google Scholar

[12] C.G. Levi, G.J. Abbaschian and R. Mehrabian: Metall. Trans. A Vol. 9 (1978), p.697.

Google Scholar

[13] J.P. Rocher, J.M. Quenisset and R. Naslain: J. Mater. Sci. Lett. Vol. 4 (1985), p.1841.

Google Scholar

[14] F. Dellaney, L. Rozen and A. Deryttere: J. Mater. Sci. Vol. 22 (1987) p.1.

Google Scholar

[15] T.P. Fisher: Br. Foundryman Vol. 66 (1973), p.71.

Google Scholar

[16] K. Kocatepe : Mater. Des. Vol. 28 (2007), p.1767.

Google Scholar

[17] J. Bast, J. Hubler and C. Dommaschk: Adv. Eng. Mater. Vol. 6 (2004), p.550.

Google Scholar

[18] K. Kocatepe and C.F. Burdett: J. Mater. Sci. Vol. 35 (2000), p.3327.

Google Scholar

[19] J. Deshpande and M.M. Makhlouf: AFS Trans., paper 08-104, May, 2008, Atlanta, GA.

Google Scholar

[20] N. Abu-Dheir, M. Khraisheh, K. Saito and A. Male: Mater. Sci. Eng. A Vol. 393 (2005), p.109.

Google Scholar

[21] D.R. Herling, G.J. Grant and W. Hunt Jr.: Adv. Mater. Processes 159 (2001), p.37.

Google Scholar

[22] DURALCAN, in: Composites for High-Pressure die casings: Mechanical and Physical Property Data. Duralcan, USA, San Diego, CA, (1995).

Google Scholar

[23] G. Timelli, P. Ferro and F. Bonollo: Metall. Ital. Vol. 102 (2010), p.11.

Google Scholar

[24] F. Grosselle, G. Timelli, F. Bonollo, A. Tiziani and E. Della Corte: Metall. Ital. Vol. 101 (2009), p.25.

Google Scholar

[25] F. Piasentini, F. Bonollo and A. Tiziani: Metal. Sci. Tech. Vol. 23 (2005), p.11.

Google Scholar

[26] L. Bäckerud, G. Chai and J. Tamminen: Solidification Characteristics of Aluminum Alloys, Volume 2: Foundry Alloys (American Foundrymen's Society Inc., Des Plaines, IL, 1990).

Google Scholar

[27] M.M. Makhlouf and H.V. Guthy: J. of Light Metals 1 (2001), p.199.

Google Scholar

[28] A. Manente and G. Timelli: Metall. Ital. 100 (2008), p.37.

Google Scholar

[29] X. Jian, T.T. Meek and Q. Han: Scripta Mater. 54 (2006), p.893.

Google Scholar

[30] J.C. Baez, C. Gonzalez, M.R. Chavez, M. Castro and J. Juarez: J. Mater. Process. Technol. 153-154 (2004), p.531.

Google Scholar

[31] W. Zhou and Z.M. Xu: J. Mater. Process. Technol. 63 (1997), p.358.

Google Scholar

[32] J. Campbell: Casting (Elsevier Butterworth-Heinemann , Oxford 2003).

Google Scholar

[33] J. Campbell: Int. Met. Reviews 2 (1981), p.71.

Google Scholar