Effects of Reinforcement Parameters on Fatigue Strength of Aluminium-Based Particulate-Reinforced Composites

Article Preview

Abstract:

A study on low-cycle and high-cycle fatigue behaviour of 6061-Al2O3 composites reinforced with nominal volume fractions of 10% and 20% of Al2O3 particulates is presented. The effects of reinforcement geometrical features (volume fraction and size) and of the loading mode experienced during the different kind of fatigue tests (strain controlled and stress controlled tests) were evaluated. A relation with crack growth mechanisms was drawn by analyses on fracture surfaces and on longitudinal sections of specimens subjected to the fatigue tests. The micromechanisms of cyclic deformation and of microstructural damage acting in the materials are discussed and compared to data and observations available from the wide published literature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-134

Citation:

Online since:

February 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Llorca: Prog. in Mater. Sci. Vol. 47 (2002), p.283.

Google Scholar

[2] C. Kaynak and S. Boylu: Mater. and Design Vol. 27 (2006), P. 776.

Google Scholar

[3] Y. Ochi, K. Masaki, T. Matsamura and M. Wadasako: Mater. Sci. Eng. A Vol. 468-470 (2007), p.230.

Google Scholar

[4] B.G. Park, A.G. Crosky and A.K. Hellier: Comp. part B: Vol. 39 (2008), p.1257.

Google Scholar

[5] L. Ceschini, G. Minak and A. Morri: Comp. Sci. and Techn. Vol. 66 (2006), p.333.

Google Scholar

[6] S.C. Tjong, G.S. Wang and Y. -W. Mai: Comp. Sci. and Techn. Vol. 65 (2005), p.1537.

Google Scholar

[7] K. Mahadevan, K. Raghukandn, B.C. Pai and U.T.S. Pillai: J. Mater. Proc. Techn. Vol. 198 (2008), p.241.

Google Scholar

[8] C. Bosi, G.L. Garagnani, R. Tovo and M. Vedani: Int. J. Mater. Prod. Techn. Vol. 17 (2002), p.228.

Google Scholar

[9] J. Llorca and P. Poza: Acta Metall. Mater. Vol. 43 (1995), p.3959.

Google Scholar

[10] K. Tokaji, H. Shiota and K. Kobayashi: Fat. and Fract. Eng. Mater. Struct. Vol. 22 (1999), p.281.

Google Scholar

[11] I. Sinclair and P.J. Gregson: Mater. Sci. Techn. Vol. 13 (1997), p.709.

Google Scholar

[12] T. Wilkins and Y. -L. Shen: Comp. Mater. Sci. Vol. 22 (2001). p.291.

Google Scholar

[13] B.R. Crawford and J.R. Griffiths: Fat. and Fract. Eng. Mater. Struct. Vol. 22 (1999), p.811.

Google Scholar

[14] C. –S. Li and F. Ellyin: Fat. and Fract. Eng. Mater. Struct. Vol. 18 (1995), p.1299.

Google Scholar

[15] S. Kumai, K. Yoshida, Y. Higo and S. Nunomura: Int. J. Fat. Vol. 14 (1992), p.105.

Google Scholar

[16] S. Qu, T. Siegmund, T. Huang, P.D. Wu, F. Zhang and K.C. Hwang: Comp. Sci. Techn. Vol. 65 (2005), p.1244.

Google Scholar

[17] Y. Uematsu, K. Tokaji and M. Kawamura: Comp. Sci Techn. Vol. 68 (2008), p.2785.

Google Scholar

[18] K. Tokaji: Fat. Fract. Eng. Mater. Struct. Vol. 28 (2005), p.539.

Google Scholar

[19] J.M. Howe: Int. Mater. Rev. Vol. 38 (1993), P. 257.

Google Scholar

[20] J.C. Lee, G.H. Kim and H.I. Lee: Mater. Sci. Techn. Vol. 13 (1997), p.182.

Google Scholar

[21] T.S. Srivatsan: Int. J. Fat. Vol. 17 (1995), p.183.

Google Scholar