Dry Sliding Behaviour of Peo (Plasma Electrolytic Oxidation) Treated AA 2618/20% Al2O3p Composite

Article Preview

Abstract:

The present study focuses on the influence of the PEO (Plasma Electrolytic Oxidation) treatment on the tribological behaviour of the AA2618/20 % vol. Al2O3p composite, dry sliding against induction hardened UNI C55 steel. Particle-reinforced Al based composites offer a higher wear resistance by comparison with the corresponding unreinforced alloys, however, the presence of critical loads and/or velocities which lead to transition towards severe wear regime, was often observed. In such conditions, the composite can show higher wear rates than those of unreinforced alloys. For this reason, surface modifications, such as PEO, might contribute to improve wear resistance. In this paper, topography, microstructure, phase constitution and surface hardness of the PEO-treated composite were investigated and its tribological behaviour was studied by dry sliding tests using a block-on-ring tribometer. The results were compared with those from the uncoated composite, demonstrating a very positive effect of the PEO treatment, which moved transitions from mild to severe wear towards more severe test conditions, in terms of both load and velocity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

61-74

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Bonollo, L. Ceschini, G. L. Garagnani, G. Palombarini, A. Zambon: Mater. Sci. and Techn. Vol. 10, Issue 6 (1994), p.481.

Google Scholar

[2] L. Ceschini, C. Bosi, A. Casagrande. G. L. Garagnani: Wear Vol. 251 (2001), p.1377.

Google Scholar

[3] L. Ceschini, A. Morri, G. Sambogna, M.C. Breslin, M. Fuller: Int. J. of Mat. & Prod. Techn., Vol. 17, Issue 3/4 (2002), p.165.

Google Scholar

[4] R. L. Deuis, C. Subramanian, J. M. Yellup: Wear Vol. 201 (1996), p.132.

Google Scholar

[5] R. L. Deuis, C. Subramanian, J. M. Yellup: Comp. Sci. and Techn., Vol. 57 (1997), p.415.

Google Scholar

[6] M. Godet: Wear Vol. 136 (1990), p.29.

Google Scholar

[7] A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S. J. Dowey: Surf. and Coat. Techn. Vol. 122 (1999), p.73.

Google Scholar

[8] A. L. Yerokhin, A. Shatrov, V. Samsonov, P. Shashkov, A. Pilkington, A. Leyland, A. Matthews: Surf. and Coat. Techn. Vol. 199, Issue 2-3 (2005), p.150.

DOI: 10.1016/j.surfcoat.2004.10.147

Google Scholar

[9] L.O. Snizhko, A.L. Yerokhin, A. Pilkington, N.L. Gurevina, D.O. Misnyankin, A. Leyland, A. Matthews: Electrochimica Acta Vol. 49 (2004), p. (2085).

DOI: 10.1016/j.electacta.2003.11.027

Google Scholar

[10] E. Matykina, R. Arrabal, P. Skeldon, G. E. Thompson: Surf. Interface Anal. Vol. (2010), p.221.

Google Scholar

[11] R.O. Hussein, X. Nie, D.O. Northwood, A. Yerokhin, A. Matthews: J. Phys. D: Appl. Phys. Vol. 43 (2010), p.1.

Google Scholar

[12] J. A. Curran, T. W. Clyne: Surf. and Coat. Techn. Vol. 199 (2005), p.168.

Google Scholar

[13] J.A. Curran, T.W. Clyne: Surf. and Coat. Techn. Vol. 199 (2005), p.177.

Google Scholar

[14] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews: Surf. and Coat. Techn. Vol. 130 (2000) p.195.

Google Scholar

[15] A.L. Yerokhin, A. Leyland, A. Matthews: Appl. Surf. Sci. Vol. 200 (2002), p.172.

Google Scholar

[16] L. Ceschini, E. Lanzoni, C. Martini, D. Prandstraller, G. Sambogna: Wear Vol. 264 (2008) p.86.

DOI: 10.1016/j.wear.2007.01.045

Google Scholar

[17] R. Arrabal, E. Matykina, T. Hashimoto, P. Skeldon, G.E. Thompson: Surf. and Coat. Techn. Vol. 203 (2009), p.2207.

Google Scholar

[18] S.V. Gnedenkov, O.A. Khrisanfova, A.G. Zavidnaya, S.L. Sinebryukhov, V.S. Egorkin, M.V. Nistratova, A. Yerokhin, A. Matthews: Surf. and Coat. Techn. Vol. 204 (2010), p.2316.

DOI: 10.1016/j.surfcoat.2009.12.024

Google Scholar

[19] A. L. Yerokhin, L. O. Snizhko, N. L. Gurevina, A. Leyland, A. Pilkington, A. Matthews: J. Phys. D: Appl. Phys. Vol. 36 (2003), p.2110.

DOI: 10.1088/0022-3727/36/17/314

Google Scholar

[20] M. Cartier, Handbook of Surface Treatments and Coatings (HEF Group, Professional Engineering Publishing, New York 2003).

Google Scholar

[21] X. Nie, E.I. Meletis, J.C. Jiang, A. Leyland, A.L. Yerokhin: Surf. and Coat. Techn. Vol. 149 (2002), p.245.

Google Scholar

[22] R.C. Barik, J.A. Wharton, R.J.K. Wood, K.R. Stokes, R.L. Jones: Surf. and Coat. Techn. Vol. 199 (2005), p.158.

Google Scholar

[23] Y. Guan, Y. Xia, G. Li: Surf. and Coat. Techn. Vol. 202 (2008), p.4602.

Google Scholar

[24] S. Cui, J. Han, Y. Du, W. Li: Surf. and Coat. Techn. Vol. 201 (2007), p.5306.

Google Scholar

[25] J. Lee, S. Kang, J. Han: Wear Vol. 264 (2008), p.75.

Google Scholar

[26] L. Ceschini, G. S. Dahen, G. L. Garagnani, C. Martini: Wear Vol. 216 (1998), p.229.

Google Scholar

[27] W. C. Oliver, G. M. Pharr: J. Mat. Research Vol. 7 (1992), p.1564.

Google Scholar

[28] L.E. Samuels, T.O. Mulhearn: J. of the Mech. and Phys. of Solids 5 (1957) 125-134.

Google Scholar

[29] J.L. Sullivan, S.G. Hodgson: Wear Vol. 121 (1988), p.95.

Google Scholar

[30] B. Venkataraman, G. Sundararajan: Wear Vol. 245 (2000), p.22.

Google Scholar

[31] G. Straffelini: Attrito e usura. Metodologie di progettazione e controllo (Tecniche Nuove, Milano 2005).

Google Scholar

[32] I. M. Hutchings: Tribology, Friction and Wear of Engineering Materials (Edward Arnold, UK 1992).

Google Scholar