Numerical Analysis of Laser Shock Peening as a Process for Generation of Compressive Residual Stresses in Open Hole Specimens

Article Preview

Abstract:

A numerical analysis of Laser Shock Peening (LSP) process is illustrated, applied to an open hole specimen. This specimen is representative of a section of an aircraft fuselage lap joint, typically prone to fatigue crack nucleation at the rivet holes. The effect of the residual stress field induced by LSP on the fatigue life of open hole specimens is investigated. The results show that significant compressive residual stresses can be introduced in fatigue sensitive areas using LSP, postponing fatigue crack nucleation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

267-272

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Kruusing: Handbook of liquids-assisted laser processing (Elsevier Science Ltd., The Nethlerlands, 2008).

Google Scholar

[2] K. Ding and L. Ye: Laser Shock Peening-Performance and Process Simulation (Woodhead Publishing Ltd., UK, 2006).

Google Scholar

[3] G. Ivetic, editor, Advances in Laser Shock Peening theory and practice around the world: present solutions and future challenges, (Emerald Group Publishing Ltd, UK, in press, to be published 2011).

DOI: 10.1108/ijsi.2011.43602aaa.002

Google Scholar

[4] N. Mukai, N. Aoki, M. Obata, A. Ito, Y. Sano and C. Konagai, In: Proc. 3rd JSME/ASME International Conference on Nuclear Engineering (ICONE-3), (1995).

Google Scholar

[5] J. Liu, X.J. Shao, Y.S. Liu, Z.F. Yue, Mater. Sci. Eng. A477 (2008); pp.271-276.

Google Scholar

[6] S. Pasta, Engineering Fracture Mechanics 74 (2007); p.1525–1538.

Google Scholar

[7] L. Boni, A. Lanciotti, C. Polese, in: Proceeedings of 24th ICAF Symposium, edited by L. Lazzeri, Volume 2, (2007); pp.832-845.

Google Scholar

[8] S.T. Pinho, H.B. Martins, P.P. Camanho M.H. Santare and P.M.S.T. de Castro, Theoretical and Applied Fracture Mechanics 44 (2005); pp.168-177.

DOI: 10.1016/j.tafmec.2005.06.005

Google Scholar

[9] M. Priest, C.G. Poussard, M.J. Pavier and D.J. Smith, Experimental Mechanics, Vol. 35, N. 4, (1995); pp.361-366.

Google Scholar

[10] J. -M. Yang, Y.C. Hera, N. Han, A. Clauer, Mater. Sci. Eng. A298 (2001); p.296–299.

Google Scholar

[11] Y.K. Zhang, X.D. Ren, J.Z. Zhou, J.Z. Lu, L.C. Zhou, Materials and Design 30 (2009); p.2769–2773.

Google Scholar

[12] G. R. Johnson, W. H. Cook, In: Proc. 7th Int. Symp. On Ballistics, (1983); p.541–547.

Google Scholar

[13] D. Lesuer, Experimental Investigations of Material Models for Ti-6Al-4V Titanium and 2024-T3 Aluminum, U.S. Department of Transportation, DOT/FAA/AR-00/25, (2000).

Google Scholar

[14] X. Teng, T. Wierzbicki, Eng. Fract. Mechanics 73 (2006); p.1653–1678.

Google Scholar

[15] L. Berthe, R. Fabbro, P. Peyre, L. Tollier, E. Bartnicki, J. Appl. Phys., Vol. 82, No. 6, (1997).

Google Scholar

[16] N.E. Dowling, Mechanical Behaviour of Materials, (Prentice Hall, USA, 1993).

Google Scholar

[17] C. Boller, T. Seeger, Materials data for cyclic loading, (Elsevier, The Netherlands, 1987).

Google Scholar