Structure Evolution and Deformation Resistance in Production and Application of Ultrafine-Grained Materials – the Concept of Steady-State Grains

Article Preview

Abstract:

Severe plastic predeformation of crystalline materials leads not only to formation of a steady-state dislocation structure including low-angle boundaries, but also brings the high-angle boundary structure into a steady state. When the steady-state flow stress is high enough, the material becomes ultrafine-grained or even nanocrystalline. The change from coarse-grained to ultrafine-grained is accompanied by a distinct change in the steady-state deformation resistance that is measured after predeformation. This is explained by two opposing effects of high-angle boundaries, namely enhanced dislocation storage and accelerated dislocation recovery. The first one causes net hardening at high temperature-normalized strain rate Z (Zener–Hollomon), the second one net softening at low Z. This means that the rate-sensitivity of the flow stress is enhanced, which causes the paradoxon of enhanced strength at enhanced ductility. Tests with abrupt large changes of deformation conditions bring the strain associated with dynamic recovery into the focus. The results of such tests indicate that the boundaries, low-angle as well as high-angle ones, migrate under concentrated stress during deformation and thereby contribute to straining and recovery. The corresponding system of differential equations needed to model structure evolution and deformation kinetics on a semi-empirical basis is briefly discussed.

You might also be interested in these eBooks

Info:

[1] H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps, Pergamon Press, Oxford (1982).

Google Scholar

[2] W. Blum: High-Temperature Deformation and Creep of Crystalline Solids, in Plastic Deformation and Fracture of Materials, edited by H. Mughrabi, Vol. 6 of Materials Science and Technology, edited by R.W. Cahn, P. Haasen and E.J. Kramer, VCH Verlagsgesellschaft, Weinheim (1993).

DOI: 10.1002/cite.330651022

Google Scholar

[3] W. Blum, A. Absenger and R. Feilhauer: Dislocation Structure in Polycrystalline AlZn during Transient and Steady State Creep in Proc. 5th Int. Conf. on the Strength of Metals and Alloys (ICSMA 5), edited by P. Haasen, V. Gerold and G. Kostorz, Pergamon Press, Oxford (1980).

DOI: 10.1016/b978-1-4832-8412-5.50051-5

Google Scholar

[4] S. Mekala, P. Eisenlohr and W. Blum: Philos. Mag. A, in print.

Google Scholar

[5] H. Abral, J. Kroc, W. Blum and J. Hirsch: Microstructure and Deformation Resistance in Rolling of Aluminium Foil, in Aluminum Alloys Their Physical and Mechanical Properties, Proc. ICAA-6, edited by T. Sato, S. Kumai, T. Kobayashi and Y. Murakami, Vol. 1, The Japan Institute of Light Metals, Tokyo (1998).

Google Scholar

[6] H.J. McQueen, E. Evangelista, M. Cabibbo, and G. Avramovic-Cingara: Canadian Metallurgical Quarterly 47 (2007), p.71.

DOI: 10.1179/cmq.2008.47.1.71

Google Scholar

[7] D.A. Hughes: The evolution of deformation microstructures and local orientations, in Proc. of the 16th Risø Int. Symp.: Microstructural and Crystallographic Aspects of Recrystallization , edited by N. Hansen, D. Juul Jensen, Y.L. Liu and B. Ralph, Risø National Laboratory, Roskilde, Denmark (1995).

Google Scholar

[8] D.A. Hughes and N. Hansen: Acta Mater. 45 (1997), p.3871.

Google Scholar

[9] D.A. Hughes, N. Hansen, and D.J. Bammann: Scripta Mater. 48 (2003), p.147.

Google Scholar

[10] M. Cabibbo, W. Blum, E. Evangelista, M.E. Kassner and M.A. Meyers: Metall. Mater. Trans. 39A (2008), p.181.

Google Scholar

[11] W. Blum and H.J. McQueen: Materials Science Forum Vol. 217-222 (1996), p.31.

Google Scholar

[12] Y.J. Li and W. Blum: phys. stat. sol. (a) 202 (2005), p. R119.

Google Scholar

[13] Y.J. Li, X.H. Zeng and W. Blum: Mater. Sci. Eng. A 483-484 (2008), p.547.

Google Scholar

[14] W. Blum, Y.J. Li and K. Durst: Acta Mater. 57 (2009), p.5207.

Google Scholar

[15] W. Blum, Y.J. Li, J.T. Wang and Y. Zhang: to be submitted to Mater. Sci. Eng. A.

Google Scholar

[16] E. Nes: Modelling work hardening and stress saturation in FCC metals, Progr. Mater. Sci. 41 (1998), p.129.

Google Scholar

[17] S.F. Exell and D.H. Warrington: Philos. Mag. 26A (1972) 1121.

Google Scholar

[18] S. Vogler and W. Blum: Micromechanical modelling of creep in terms of the composite model, in Creep and Fracture of Engineering Materials and Structures, edited by B. Wilshire and R.W. Evans, The Institute of Metals, London (1990), p.65.

Google Scholar

[19] M. Biberger and W. Blum: Philos. Mag. 66A (1992), p.27.

Google Scholar

[20] T. Gorkaya, D.A. Molodov and G. Gottstein: Acta Mater. 57 (2009), p.5396.

Google Scholar

[21] J.S. Dubey, H. Chilukuru, J.K. Chakravartty and W. Blum: Mater. Sci. Eng. A 406 (2005), p.152.

Google Scholar

[22] B. Holmedal, K. Marthinsen and E. Nes: Z. Metallkd. 96 (2005), p.532.

Google Scholar

[23] P. Eisenlohr, M. Winning, and W. Blum: phys. stat. sol. (a) 200 (2003), p.339.

Google Scholar

[24] D.A. Molodov, V.A. Ivanov and G. Gottstein: Acta Mater. 55 (2007), p.1843.

Google Scholar

[25] T. Gorkaya, T. Burlet, D.A. Molodov and G. Gottstein: Scripta Mater. 63 (2010), p.633.

Google Scholar

[26] W. Müller, M. Biberger and W. Blum: Philos. Mag. 66A, (1992), p.717.

Google Scholar

[27] M. Meier, Q. Zhu and W. Blum: Z. Metallkde. 84 (1993), p.263.

Google Scholar

[28] Y.J. Li, X.H. Zeng and W. Blum: Acta Mater. 52 (2004), p.5009.

Google Scholar

[29] X.H. Zeng, P. Eisenlohr and W. Blum: Mater. Sci. Eng. A 483-484 (2008), p.95.

Google Scholar

[30] W. Blum and X.H. Zeng: Acta Mater. 57 (2009), p. (1966).

Google Scholar

[31] T. Niendorf, J. Dadda, D. Canadinc, H.J. Maier, and I. Karaman: Mater. Sci. Eng. A 517 (2009), p.225.

Google Scholar

[32] R. Kapoor, Y.J. Li, J.T. Wang, and W. Blum: Scripta mater. 54 (2006), p.1803.

Google Scholar

[33] W. Blum, P. Eisenlohr and V. Sklenicka: in Bulk Nanostructured Materials, edited by M. Zehetbauer and Y.T. Zhu, Wiley-VCH, Weinheim (2009), p.519.

Google Scholar

[34] F. Breutinger. Verformungsverhalten und Verformungskinetik von Titan technischer Reinheit und der Titanlegierung TiAl6V4 im Bereich niedriger homologer Temperaturen von 0, 22 (150 ◦C) bis 0, 48 (650 ◦C ). PhD thesis, University of Erlangen-Nürnberg (2006).

Google Scholar

[35] F. Mompiou, D. Caillard and M. Legros: Acta Mater. 57 (2009), p.2198.

Google Scholar

[36] D. Caillard, F. Mompiou and M. Legros: Acta Mater. 57 (2009), p.2390.

Google Scholar

[37] X. Molodova, G. Gottstein, M. Winning, and R.J. Hellmig: Mater. Sci. Eng. A 460–461 (2007), p.204.

Google Scholar

[38] Y.J. Li, R. Kapoor, J.T. Wang and W. Blum: Scripta Mater. 58 (2008), p.53.

Google Scholar

[39] N. Kamikawa, X.X. Huang, and N. Hansen: J. Mater. Sci. 43 (2008), p.7313.

Google Scholar