Crystal Structures of Modulated Martensitic Phases of FSM Heusler Alloys

Article Preview

Abstract:

Multifunctional ferromagnetic shape memory Heusler alloys are frequently characterized by structural modulation in martensitic phases. In particular, modulated martensitic phases, showing the higher magnetic field induced strain (MFIS) performance, are the most promising candidates for technological applications. Depending on the composition, as well as pressure and temperature conditions, this periodic structural distortion, consisting of shuffling of atomic layers along defined crystallographic directions, accompanies the martensitic transformation. Over the years, different Ni-Mn-Ga modulated martensitic structures have been observed and classified depending upon the periodicity of corresponding ideal nM superstructure (where n indicates the number of basic unit cells constituting the superlattices). On the other hand, it has been demonstrated that in most cases such structural modulation is incommensurate and the crystal structure has been fully determined by applying superspace formalism. The results, obtained by structure refinements on powder diffraction data, suggest a unified crystallographic description of the modulated martensitic structures, here presented, where every different “nM” periodicity can be straightforwardly represented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-116

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Advances in Shape Memory Materials. Edited by V.A. Chernenko. Vol 583. Materials Science Forum, Trans Tech Publications Inc., Switzerland, (2008).

Google Scholar

[2] R. C. O'Handley: J. Appl. Phys. Vol. 83 (1998), p.3263.

Google Scholar

[3] L. Pareti, M. Solzi, F. Albertini and A. Paoluzi: Eur. Phys. J. B Vol. 32 (2003), p.303.

Google Scholar

[4] V.A. Chernenko, E. Cesari, V.V. Kokorin and I.N. Vitenko: Scripta Metall. Mater. Vol. 33 (1995), p.1239.

Google Scholar

[5] P.J. Webster, K.R.A. Ziebeck, S.L. Town and M.S. Peak: Phil. Mag. Vol. B 49 (1984), p.295.

Google Scholar

[6] V.V. Martynov and V.V. Kokorin : Journ. de Phys. III Vol. 2 (1992), p.739.

Google Scholar

[7] V.V. Martynov : J. de Phys. IV Vol. C8 (1995), p.91.

Google Scholar

[8] J. Pons, V.A. Chernenko, R. Santamarta and E. Cesari: Acta Mater. Vol. 48 (2000), p.3027.

Google Scholar

[9] S. Morito and K. Otsuka: Mater. Sci. Eng. A Vol. 208 (1996), p.47.

Google Scholar

[10] C.M. Hwang, M. Meichle, M.B. Salamon, C. M. Wayman: Phil. Mag. A. Vol. 9 (1983), p.47.

Google Scholar

[11] C. Zener: Phys. Rev. Vol. 71 (1947), p.846.

Google Scholar

[12] A. Zheludev, S.M. Shapiro, P. Wochner, A. Schwartz, M. Wall and L.E. Tanner: J. Phys. IV Vol. C8 (1995), p.1139.

DOI: 10.1051/jp4/1995581139

Google Scholar

[13] J. Pons, R. Santamarta, V.A. Chernenko and E. Cesari: Mater. Sci. Eng. A Vol. 438-440 (2006), p.931.

Google Scholar

[14] Polymorphism and Polytypism in Crystals. By A. R. Verma & P. Krishna, Wiley, New York, (1966).

Google Scholar

[15] L.S. Ramsdell: Am. Mineralogist Vol. 32 (1947), p.64.

Google Scholar

[16] G. Hagg : Ark. Kem. Mineral. Geol . Vol. 163 (1943), p.1.

Google Scholar

[17] F. C. Frank: Phil. Magazine Vol 42 (1951) p.1014.

Google Scholar

[18] G. S. Zhdanov: Compt. Rend. Acad. Sci. URSS Vol. 48 (1945), p.43.

Google Scholar

[19] Nature of the Chemical Bond by Pauling, L. Cornell Univ. Press, Ithaca, (1945).

Google Scholar

[20] A.G. Khachaturyan, S. M. Shapiro and S. Semenovskaya: Phys Rev B Vol. 43 (1991), n. a. 10832.

Google Scholar

[21] J.C. Bowles and J.K. Mackenzie: Acta metal. Vol. 2 (1954), p.129.

Google Scholar

[22] J. Pons, R. Santamarta, V. A. Chernenko and E. Cesari: Journ. Appl. Phys. Vol. 97 (2005), n. a. 083516.

Google Scholar

[23] S. Kaufmann, U.K. Rößler, O. Heczko, M. Wutting, J. Buschbeck, L. Schultz and S. Fähler: Phys. Rev. Lett. Vol. 104(2010), n. a. 145702.

DOI: 10.1103/physrevlett.104.145702

Google Scholar

[24] Y. Ge, O. Söderberg, N. Lanska, A. Sozinov, K. Ullakko and V.K. Lindroos: J. Phys IV France Vol. 112 (2003), p.112.

DOI: 10.1051/jp4:20031031

Google Scholar

[25] L. Righi, F. Albertini, G. Calestani, L. Pareti, A. Paoluzi, C. Ritter, P.A. Algarabel, L. Morellon and M.R. Ibarra: J. Solid State Chem. Vol. 179 (2006), p.3525.

DOI: 10.1016/j.jssc.2006.07.005

Google Scholar

[26] H. Kushida, K. Fukuda, T. Terai, T. Fukuda, T. Kakeshita, T. Ohba, T. Osakabe, K. Kakurai and K. Kato: Eur. Phys. J. Special Topics Vol. 158 (2007), p.87.

DOI: 10.1140/epjst/e2008-00658-2

Google Scholar

[27] T. Janssen, A. Janner, A. Looijenga and P.M. Wolff: in International Tables for Crystallography Vol. C, Sect. 9. 8., Kluwer, Dordrecht (1992).

Google Scholar

[28] Crystallographic Data on Metal and Alloy Structures by A. Taylor, J. Brenda Kagle, Dover Publ. Inc., Dover , (1963).

DOI: 10.1126/science.144.3619.693

Google Scholar

[29] L. Righi L, F. Albertini F, L. Pareti L, A. Paoluzi and G. Calestani: Acta Mater. Vol. 55 (2007), p.5237.

DOI: 10.1016/j.actamat.2007.05.040

Google Scholar

[30] Y. Noda, S.M. Shapiro, G. Shirane, Y. Yamada and L.E. Tanner: Phys Rev B Vol. 42  (1990), p.10397.

Google Scholar

[31] A. Sozinov, A. Likhachev and K. Ullakko: IEEE Trans. Magn. Vol. 38 (2002), p.2814.

Google Scholar

[32] P. Mullner and K Ullakko: Phys. Stat. Sol. Vol. B202 (1998), p. R1.

Google Scholar

[33] U. Gaizsch, M. Potschke, S. Roth, N. Mattern, B. Rellinghaus and L. Schultz: J. Alloys Comp. Vol. 443 (2007), p.99.

Google Scholar

[34] C. Jiang, Y. Muhammad, L. Deng, W. Wu and H. Xu : Acta Mater. Vol. 52 (2004), p.2779.

Google Scholar

[35] J. Pons, R. Santamarta, V.A. Chernenko and E. Cesari: Mater. Sci. Eng. A Vol. 438-440 (2006), p.931.

Google Scholar

[36] L. Righi, F. Albertini, E. Villa, A. Paoluzi, G. Calestani, V. Chernenko, S. Besseghini, C. Ritter and F. Passaretti: Acta Mater. Vol. (2008) p.4529.

DOI: 10.1016/j.actamat.2008.05.010

Google Scholar

[37] Z. Li, Y. Zhang, C. Esling , X. Zhao, Y. Wang and L. Zuo: J. Appl. Cryst. Vol. 43 (2010), p.617.

Google Scholar

[38] L. Righi, P. Lázpita, J. Gutierrez, J.M. Barandiaran, V.A. Chernenko and G. Calestani : Scripta Mater. Vol. 62 (2010), p.383.

DOI: 10.1016/j.scriptamat.2009.11.027

Google Scholar