Stress-Temperature Phase Diagram of Ni2MnGa and Structural Relations between its Constituent Phases

Article Preview

Abstract:

The ferromagnetic shape memory alloy Ni2MnGa exhibits a successive martensitic transformation from the L21-type structure to the so-called intermediate phase and then to the martensite phase with an incommensurate structure during cooling under zero stress. In addition to these phases, a new phase, which we call the X-phase, appears when Ni2MnGa is cooled under compressive stress applied in the [001] direction. In this paper, we discuss the structural relations between the X-phase and the other phases on the basis of experimental results of compressive tests, transmission electron microscope observations and neutron diffraction patterns. It is likely that a multicritical point exists in the stress-temperature phase diagram of Ni2MnGa.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

61-71

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Ullakko, J.K. Huang, C. Kantner, R.C. O'Handley, V.V. Kokorin, Appl. Phys. Lett. 69 (1996) (1966).

Google Scholar

[2] S.J. Murray, M. Marioni, S.M. Allen, R.C. O'Handley, T.A. Lograsso, Appl. Phys. Lett. 77 (2000) 886.

Google Scholar

[3] A. Sozinov, A.A. Likhachev, N. Lankasa, K. Ullakko, Appl. Phys. Lett. 80 (2002) 1746.

Google Scholar

[4] N. Okamoto, T. Fukuda, T. Kakeshita, Mater. Sci. Eng. A 481-482 (2008) 306.

Google Scholar

[5] V. A. Chernenko, V. A. L'vov, P. Müllner, G. Kostorz, T. Takagi, Phys. Rev. B 69 (2004) 134410.

Google Scholar

[6] A. Planes, L. Mãosa, M. Acet, J. Phys. Cond. Matt. 21 (2009) 233201.

Google Scholar

[7] V.V. Khovaylo, K. P. Skokov, O. Gutfleisch, H. Miki, R. Kainuma, T. Kanomata, Appl. Phys. Lett. 97 (2010) 052503.

DOI: 10.1063/1.3476348

Google Scholar

[8] E. Cesari, V. A. Chernenko, V. V. Kokorin, J. Pons, C. Segui, Acta Mater. 45 (1997) 999.

Google Scholar

[9] A. Planes, E. Obrandó, A. Gonzàlez-Comas, L. Monõsa, Phys. Rev. Lett. 79 (1997) 3926.

Google Scholar

[10] A. Zheludev, S. M. Shapiro, P. Wochner, A. Schwarts, M. Wall, L. E. Tanner, Phys. Rev. B 51 (1995) 11310.

Google Scholar

[11] A. Zheludev, S. M. Shapiro, P. Wochner, L. E. Tanner, Phys. Rev. B 54 (1996) 15045.

Google Scholar

[12] L. Mañosa, A. Planes, J. Zarestky, T. Lograsso, D. L. Schlagel, C. Strassis, Phys. Rev. B 64 (2001) 024305.

Google Scholar

[13] U. Stuhr, P. Vorderwisch, V. V. Kokorin, P. -A. Lindgård, Phys. Rev. B 56 (1997) 14360.

Google Scholar

[14] Y. Lee, J. Y. Rhee, B.N. Harmon, Phys. Rev. B 56 (2002) 054424.

Google Scholar

[15] M. A. Uijttewaal, T. Hickel, J. Neugebauer, M. E. Gruner, P. Entel, Phys. Rev. Lett. 102 (2009) 035702.

Google Scholar

[16] L. Righi, F. Albertini, G. Calestani, L. Pareti, A. Paoluzi, C. Ritter, P. A. Algarabel, L. Morellon, M. R. Ibarra, J. Sol. State Chem. 179 (2006) 3525.

DOI: 10.1016/j.jssc.2006.07.005

Google Scholar

[17] H. Kushida, K. Fukuda, T. Terai, T. Fukuda, T. Kakeshita, T. Ohba, T. Osakabe, K. Kakurai, K. Kato, Eur. Physica Journal Special Topics 158 (2008) 87.

DOI: 10.1140/epjst/e2008-00658-2

Google Scholar

[18] J-h. Kim, T. Fukuda, T. Kakeshita, Scripta Mater. 54 (2006) 585.

Google Scholar

[19] H. Kushida, K. Hata, T. Fukuda, T. Terai, T. Kakeshita, Scripta Mater. 60 (2009) 96.

Google Scholar

[20] K.A. Müller, W. Berlinger and J.C. Slonczewski, Phys. Rev. Lett. 25 (1970) 734.

Google Scholar

[21] H.E. Karaca, I. Karaman, B. Basaran, D.C. Lagoudas, Y.I. Chumlyakov, H.J. Maier, Acta Mater. 55 (2007) 4253.

DOI: 10.1016/j.actamat.2007.03.025

Google Scholar

[22] X.D. Wu, T.R. Finlayson, J. Phys.: Condens. Matter 19 (2007) 02618.

Google Scholar

[23] A. Zheludev, S. M. Shapiro: Solid State Commun. 98 (1996) 35.

Google Scholar

[24] A. Gonzàlez-Comas, E. Obradó, L. Mañosa, A. Planes V. A. Chernenko, B. J. Hattink and A. Labarta, Phys. Rev. B 60 (1999) 7085.

DOI: 10.1103/physrevb.60.7085

Google Scholar

[25] T. Fukuda, H. Kushida, M. Todai, T. Kakeshita, H. Mori, Scripta Mater. 61 (2009) 473.

Google Scholar

[26] P. J. Brown, J. Crangle, T. Kanomata, M. Matsumoto, K. -U. Neumann, B. Ouladdiaf, K. R. A. Ziebeck, J. Phys. Condens. Matter 14 (2002) 10159.

DOI: 10.1088/0953-8984/14/43/313

Google Scholar

[27] J. Pons. V. A. Chernenko, R. Santamaria, E. Cesari, Acta Mater. 48 (2000) 3027.

Google Scholar

[28] H. Kushida, T. Terai, T. Fukuda, T. Kakeshita, T. Osakabe, K. Kakurai, Scripta Mater. 60 (2009) 248.

DOI: 10.1016/j.scriptamat.2008.10.018

Google Scholar

[29] T. Fukuda, T. Terai, H. Kushida, T. Kakeshita, T. Osakabe, K. Kakurai, Philos. Mag. 90 (2010) (1925).

Google Scholar