Magnetic Microstructure Analysis of Ferromagnetic Shape Memory Alloys and Related Compounds

Article Preview

Abstract:

We performed magnetic imaging of Ni-based ferromagnetic shape memory alloys. The magnetic microstructure was revealed by Lorentz microscopy and electron holography, which are powerful tools based on transmission electron microscopy. Observations of Ni51Fe22Ga27 and Ni50Mn25Al12.5Ga12.5 alloys, both of which have an L21-ordered structure in the parent phase, demonstrated that the antiphase boundaries (i.e., a type of planer defects) caused significant changes in the magnetization distribution due to depression of the atomic order—actually, the magnetization in these alloys depends upon the degree of chemical order. We propose a method which estimates the important magnetic parameters (the magnetocrystalline anisotropy constant and exchange stiffness constant) based on transmission electron microscopy observations. This method should be useful in magnetic measurements of nanometer-scale areas, for which conventional techniques cannot be applied.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

117-128

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Ullakko, J. K. Huang, C. Kantner, R. C. O'Handley and V. V. Kokorin: Appl. Phys. Lett. Vol. 69 (1996), p. (1966).

Google Scholar

[2] R. D. James and M. Wuttig: Philos. Mag. A Vol. 77 (1998), p.1273.

Google Scholar

[3] T. Kakeshita, T. Takeuchi, T. Fukuda, M. Tsujiguchi, T. Saburi, R. Oshima and S. Muto: Appl. Phys. Lett. Vol. 77 (2000), p.1502.

DOI: 10.1063/1.1290694

Google Scholar

[4] M. Wuttig, J. Li and C. Craciunescu: Scripta Mater. Vol. 44 (2001), p.2393.

Google Scholar

[5] K. Oikawa, L. Wulff, T. Iijima, F. Gejima, T. Ohmori, A. Fujita, K. Fukamichi, R. Kinuma and K. Ishida: Appl. Phys. Lett. Vol. 79 (2001), p.3290.

DOI: 10.1063/1.1418259

Google Scholar

[6] K. Oikawa, T. Ota, T. Ohmori, Y. Tanaka, H. Morito, A. Fujita, R. Kainuma, K. Fukamichi and K. Ishida: Appl. Phys. Lett. Vol. 81 (2002), p.5201.

DOI: 10.1063/1.1532105

Google Scholar

[7] F. Gejima, Y. Sutou, R. Kainuma and K. Ishida: Metall. Mater. Trans. Vol. 30 (1999), p.2721.

Google Scholar

[8] R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata and K. Ishida: Nature 439 (2006), p.957.

DOI: 10.1038/nature04493

Google Scholar

[9] Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida and K. Oikawa: Appl. Phys. Lett. Vol. 85 (2004), p.4358.

DOI: 10.1063/1.1808879

Google Scholar

[10] T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Manosa and A. Planes: Nature Mater. Vol. 4 (2005), p.450.

DOI: 10.1038/nmat1395

Google Scholar

[11] R. C. O'Handley: J. Appl. Phys. Vol. 83 (1998), p.3263.

Google Scholar

[12] V. A. Chernenko, V. V. Kokorin, O. M. Babii and I. K. Zasimchuk: Intermetallics Vol. 6 (1998), p.29.

Google Scholar

[13] Y. Murakami, D. Shindo, K. Oikawa, R. Kainuma and K. Ishida: Acta Mater. Vol. 50 (2002), p.2173.

Google Scholar

[14] T. Fukuda, T. Sakamoto, T. Kakeshita, T. Takeuchi and K. Kishio: Mater. Trans. Vol. 45 (2004), 188.

Google Scholar

[15] D. Niklasch, J. Dadda, H. J. Maier and I. Karaman: J. Mater. Sci. Vol. 43 (2008), 6890.

Google Scholar

[16] W. Ito, R. Y. Umetsu, K. Ito, K. Koyama, A. Fujita, K. Oikawa, K. Watanabe, T. Kanomata, R. Kainuma and K. Ishida: Appl. Phys. Lett. Vol. 92 (2008), p.021908.

DOI: 10.1063/1.2833699

Google Scholar

[17] A. Zheludev, S. M. Shapiro, P. Wochner, A. Schwartz, M. Wall and L. E. Tanner: Phys. Rev. B Vol. 51 (1995), p.11310.

Google Scholar

[18] M. L. Corró, S. Kustov, E. Cesari and Y. Chumlyakov: J. Appl. Phys. Vol. 105 (2009), p.073519.

Google Scholar

[19] K. Tsuchiya, A. Tsutsumi, H. Nakayama, S. Ishida and M. Umemoto: J. Phys. IV Vol. 112 (2003), p.907.

Google Scholar

[20] V. A. Chernenko: Advances in Shape Memory Materials: Magnetic Shape Memory Alloys (Trans. Tech. Pub., Switzerland 2008).

Google Scholar

[21] Q. Pan and R. D. James: J. Appl. Phys. Vol. 87 (2000), p.4702.

Google Scholar

[22] H. D. Chopra, C. Ji and V. V. Kokorin: Phys. Rev. B Vol. 61 (2000), p. R14913.

Google Scholar

[23] Y. W. Lai, N. Scheerbaum, D. Hinz, O. Gutfleisch, R. Schäfer, L. Schultz and J. McCord: Appl. Phys. Lett. Vol. 90 (2007), p.192504.

DOI: 10.1063/1.2737934

Google Scholar

[24] Y. W. Lai, R. Schäfer, L. Schultz and J. McCord: Appl. Phys. Lett. Vol. 96 (2010), p.022507.

Google Scholar

[25] M. De Graef, M. A. Willard, M. E. McHenry and Y. Zhu: IEEE Trans. Magn. Vol. 37 (2001), p.2663.

Google Scholar

[26] Y. Murakami, D. Shindo, K. Oikawa, R. Kainuma and K. Ishida: Appl. Phys. Lett. Vol. 82 (2003), p.3695.

Google Scholar

[27] V. C. Solomon, M. R. McCartney, D. J. Smith, Y. J. Tang, A. E. Berkowitz and R. C. O'Handley: Appl. Phys. Lett. Vol. 86 (2005), p.192503.

Google Scholar

[28] Y. Murakami, D. Shindo, K. Kobayashi, K. Oikawa, R. Kainuma and K. Ishida: Mater. Sci. Eng. A Vol. 438-440 (2006), p.1050.

Google Scholar

[29] S. P. Venkateswaran and M. De Graef: Acta Mater. Vol. 55 (2007), p.2621.

Google Scholar

[30] T. Yano, Y. Murakami, R. Kainuma and D. Shindo: Mater. Trans. Vol. 48 (2007), p.2636.

Google Scholar

[31] Y. Murakami, T. Yano, D. Shindo, R. Kainuma and T. Arima: Metall. Mater. Trans. A Vol. 38 (2007), p.815.

Google Scholar

[32] Y. Murakami, H. Kasai, J. J. Kim, S. Mamishin, D. Shindo, S. Mori and A. Tonomura: Nature Nanotech. Vol. 5 (2010), p.37.

DOI: 10.1038/nnano.2009.342

Google Scholar

[33] H. Ishikawa, R. Umetsu, K. Kobayashi, A. Fujita, R. Kainuma and K. Ishida: Acta Mater. Vol. 56 (2008), p.4789.

Google Scholar

[34] H. H. Kim, M. Uehara, C. Hess, P. A. Sharma and S. -W. Cheong: Phys. Rev. Lett. Vol. 84 (2000), p.2961.

Google Scholar

[35] M. De Graef and Y. Zhu: Magnetic Imaging and its Applications to Materials (Academic Press, San Diego 2001).

Google Scholar

[36] D. Shindo and T. Oikawa: Analytical Electron Microscopy for Materials Science (Springer-Verlag, Tokyo 2002).

Google Scholar

[37] A. Tonomura: Electron Holography (Springer-Verlag, Berlin 1999).

Google Scholar

[38] D. Shindo and Y. Murakami: J. Phys. D: Appl. Phys. Vol. 41 (2008), p.183002.

Google Scholar

[39] H. Kasai, A. Sugawara, K. Fukunaga and A. Tonomura: Abstract of FEMMS2009, Sasebo (2009), p.83.

Google Scholar

[40] M. Inoue, T. Tomita, M. Naruse, Z. Akase, Y. Murakami and D. Shindo: J. Electron Microsc. Vol. 54 (2005), p.509.

Google Scholar

[41] M. Ohno and T. Mohri: Philos. Mag. Vol. 83 (2003), p.315.

Google Scholar

[42] Ch. Ricolleau, A. Loiseau, F. Ducastelle and R. Caudron: Phys. Rev. Lett. Vol. 68 (1992), p.3591.

Google Scholar

[43] A. Hubert and R. Schäfer: Magnetic Domains (Springer-Verlag, Berlin 2000).

Google Scholar

[44] N. D. Mathur, M. -H. Jo, J. E. Evetts and M. G. Blamire: J. Appl. Phys. Vol. 89 (2001), p.3388.

Google Scholar

[45] J. W. Lynn, R. W. Erwin, J. A. Borchers, Q. Huang, A. Santoro, J. -L. Peng and Z. Y. Li: Phys. Rev. Lett. Vol. 76 (1996), p.4046.

Google Scholar