Influence of Polymer Concentration on Polysaccharide Electrolyte for Quasi-Solid-State Dye-Sensitized Solar Cell

Article Preview

Abstract:

A series of polymer electrolytes was synthesized to fabricate dye-sensitized solar cells by a novel polysaccharide agarose as polymer matrix, 1-methyl-2-pyrrolidinone (NMP) as plasticizers, lithium iodide (LiI)/iodine (I2) as redox couple and titania nanoparticles as an absorber. The agarose polymer electrolytes with different agarose concentrations (1-5 wt %) were systematically studied by differential scanning calorimetry (DSC) and the AC impedance spectra. The photoelectric performances of the DSSCs with different agarose content were investigated. Increasing polymer concentration led to a decrease in Tg of electrolyte in the low content range (1-2 wt %), which results in relative high conductivity in these content ranges. The 1.5 wt % agarose contained electrolyte showed the maximum conductivity of 3.94 ×10-4 S cm-1. After optimization, the energy conversion efficiency of 4.14 % was obtained in the cell with 2 wt % agarose.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

76-81

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. O'Regan and M. Grätzel: Nature Vol. 353 (1991), p.737.

Google Scholar

[2] M. Grätzel: Nature Vol. 414 (2001), p.338.

Google Scholar

[3] Y. Bai, Y.M. Cao, J. Zhang, M.K. Wang, R.Z. Li, P. Wang, S.M. Zakeeruddin and M. Grätzel: Nat. Mater. Vol. 7 (2008), p.626.

Google Scholar

[4] S. Cerneaux, S.M. Zakeeruddin, J.M. Pringle, Y.B. Cheng, M. Grätzel and L. Spiccia: Adv. Funct. Mater. Vol. 17 (2007), p.3200.

DOI: 10.1002/adfm.200700391

Google Scholar

[5] J.H. Wu, S.C. Hao, Z. Lan, J.M. Lin, M.L. Huang, Y.F. Huang, L.Q. Fang, S. Yin and T. Sato: Adv. Funct. Mater. Vol. 17 (2007), p.2645.

Google Scholar

[6] J.H. Wu, S.C. Hao, Z. Lan, J.M. Lin, M.L. Huang, Y.F. Huang, P.J. Li, S. Yin and T. Sato: J. Am. Chem. Soc. Vol. 130 (2008), p.11568.

Google Scholar

[7] M. Kaneko, N. Mochizuki, K. Suzuki, H. Shiroishi and K. Ishikawa, Chem. Lett. Vol. 5 (2002), p.530.

Google Scholar

[8] H. Ueno and M. Kaneko: J. Electroanal. Chem. Vol. 568 (2004), p.87.

Google Scholar

[9] H. Ueno, Y. Endo, Y. Kaburagi and M. Kaneko: J. Electroanal. Chem. Vol. 570 (2004), p.95.

Google Scholar

[10] M. Kaneko and T. Hoshi: Chem. Lett. Vol. 32 (2003), p.872.

Google Scholar

[11] K. Suzuki, M. Yamaguchi, M. Kumagai, N. Tanabe and S. Yanagida: C. R. Chimie Vol. 9 (2006), p.611.

Google Scholar

[12] Y. Yang, C.H. Zhou, S. Xu, H. Hu, B.L. Chen, J. Zhang, S.J. Wu, W. Liu and X.Z. Zhao: J. Power Sources Vol. 185 (2008), p.1492.

Google Scholar

[13] D. Bamford, A. Reiche, G. Dlubek, F. Alloin, J.Y. Sanchez and M.A. Alam: J. Chem. Phys. Vol. 118 (2003), p.9420.

Google Scholar

[14] C. Becker, H. Krug and H. Schmidt: Mater. Res. Soc. Symp. Proc. Vol. 435 (1996), p.237.

Google Scholar

[15] W. Hergeth, U. Steinau, H. Bittrich, G. Simon and K. Schmutzler: Polymer Vol. 30 (1989), p.254.

Google Scholar

[16] K. Iisaka and K. Shibayama: J. Appl. Polym. Sci. Vol. 22 (1978), p.3135.

Google Scholar

[17] J.P. Sharma and S.S. Sekhon: Solid State Ionics Vol. 178 (2007), p.439.

Google Scholar

[18] W. Li, J. Kang, X. Li, S. Fang, Y. Lin, G. Wang and X. Xiao: J. Photochem. Photobiol. A Vol. 170 (2005), p.1.

Google Scholar

[19] S.Y. Huang, G. Schlichthor, A.J. Nozik, M. Grätzel and A.J. Frank: J. Phys. Chem. B Vol. 101 (1997), p.2576.

Google Scholar