Influence of Magnetic Field Thermal Annealing on the High- Frequency Performance of the FeCo-Based Granular Thin Films

Article Preview

Abstract:

A series of FeCoHfO granular films were fabricated by reactive DC magnetron reactive sputtering at varying partial pressure of oxygen and annealed by magnetic field thermal annealing. By using magnetic field annealing method suitably, the soft magnetic properties of FeCoHfO granular thin films are improved obviously. The optimal annealing temperature and annealing time are 350 °C and 20 minute, respectively. The films with desired properties of low coercivity, Hc~2Oe, relatively high saturation magnetization, 4pMs~20.5 kG, high anisotropy field Hk~50Oe, and high electrical resistivity r ~ 1875mWcm and natural ferromagnetic resonant frequency about 3 GHz have been obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-105

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. C. Sohn, S. H. Han, M. Yamaguchi, and S. H. Lim: Appl. Phys. Lett. Vol. 90 (2007), p.143520.

Google Scholar

[2] B. K. Kuanr, R. Marson, S. R. Mishra et al: J. Appl. Phys. Vol. 105 (2009), p. 07A520.

Google Scholar

[3] Yan Liu, C. Y. Tan, Z. W. Liu and C. K. Ong : Appl. Phys. Lett. Vol. 90 (2007), p.112506.

Google Scholar

[4] W. Wang, Y. Chen, G. H. Yue, et al: J. Appl. Phys. Vol. 106 (2009), p.013912.

Google Scholar

[5] G. Z. Chai, D. W. Guo, X. L. Li et al : J. Phys. D: Appl. Phys. Vol. 42 (2009), p.205006.

Google Scholar

[6] D. S. Yao, S. H. Ge, X. Y. Zhou and H. P. Zuo : J. Appl. Phys. Vol. 107 (2010), p.073902.

Google Scholar

[7] D. S. Xue, G. Z. Chai, X. L. Li et al : J. Magn. Magn. Mater. Vol. 320 (2008), p.1541.

Google Scholar

[8] L. L. Li, A. M. Crawford, S. X. Wang, et al: J. Appl. Phys. Vol. 97 (2005), p. 10F907.

Google Scholar

[9] L. Li, S. X. Wang, K. P. Hwang et al: J. Appl. Phys. Vol. 99 (2006), p. 08M301.

Google Scholar

[10] N. D. Ha, M. H. Phan, and C. O. Kim: Nanotechnology Vol. 18 (2007), p.155705.

Google Scholar

[11] N. D. Ha, A. T. Le, M. H. Phan et al: Material Science and Engineering B Vol. 139 (2007), p.37.

Google Scholar

[12] V. Bekker, K. Seemann, and H. Leiste, J. Magn. Magn. Mater. Vol. 270 (2004), p.327.

Google Scholar

[13] Y. Liu, L. F. Chen, C. Y. Tan, et al: Rev. Sci. Instrum. Vol. 76 (2005), p.063911.

Google Scholar

[14] H.W. Zhang et al: J. Mater. Sci. Magn Engi. B. Vol. 34 (1995), p.53.

Google Scholar

[15] G. Herze: IEEE Trans. Magn. Vol. 25 (1989), p.3327.

Google Scholar

[16] G. Herze: IEEE Trans. Magn. Vol. 26 (1990), p.1397.

Google Scholar

[17] P. Poulopoulos and K. Baberschket: J. Phys: Condens. Matter Vol. 11 (1999), p.9495.

Google Scholar

[18] H. M. Lu, W. T. Zhang and Q. Jiang: J. Phys. D: Appl. Phys. Vol. 40 (2007), p.320.

Google Scholar

[19] G. Wedler and H. Schneck: Thin Solid Films Vol. 47 (1977), p.147.

Google Scholar

[20] K. Seemann, H. Leiste and C. Klever: J. Magn. Magn. Mater. Vol. 321 (2009), p.3149.

Google Scholar