Morphological Control of Calcium Carbonate Particles by a Novel Polymer-Surfactant Aggregate

Article Preview

Abstract:

In this paper, calcium carbonate particles with unusual morphologies could be successfully synthesized by a precipitation reaction of sodium carbonate with calcium chloride in the presence of a novel polymer-surfactant aggregate consisting of poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEG-PPG-PEG) and sodium dodecyl sulfonate (SDS). The as-prepared products were characterized with scanning electron microscopy and X-ray diffraction. The results showed that the SDS concentrations, the molar ratio of CO32- to Ca2+ (R), and the reactive temperature in the mixed system turned out to be important parameters for control of morphologies of the as-prepared CaCO3 particles. Various unusual crystal morphologies, such as hollow microsphere, cubic, and rombehedra, etc., can be obtained depending on the experimental conditions. Moreover, the formation mechanisms of calcium carbonate with different morphologies were discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

168-174

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Mann: Angew Chem. Int. Ed. Vol. 39 (2000), p.3393.

Google Scholar

[2] H. Yang, N. Coombs and G.A. Ozin: Nature Vol. 386 (1997), p.692.

Google Scholar

[3] T.S. Ahmadi, Z.L. Wang, T.C. Green, A. Henglein and M.A. ElSayed: Science Vol. 272 (1996), p. (1924).

Google Scholar

[4] H. Colfen and S. Mann: Angew. Chem. Int. Ed. Vol. 42 (2003), p.2350.

Google Scholar

[5] T. X. Wang, H. Colfen and M. Antonietti: J. Am. Chem. Soc. Vol. 127 (2005), p.3246.

Google Scholar

[6] E. Dalas, P. Klepelsanic and P.G. Koutsoukos: Langmuir Vol. 15 (1999), p.8322.

Google Scholar

[7] H. Tang, J.G. Yu and D.H.L. Ng: Cryst. Res. Technol. Vol. 42 (2007), p.856.

Google Scholar

[8] H. Tang, J.G. Yu, X.F. Zhao and D.H.L. Ng: Cryst. Res. Technol. Vol. 43 (2008), p.473.

Google Scholar

[9] H. Tang, J.G. Yu and X.F. Zhao: Mater. Res. Bulletin Vol. 44 (2009), p.831.

Google Scholar

[10] H. Tang, J.G. Yu, X.F. Zhao and D.H.L. Ng: J. Alloy. Compounds Vol. 463 (2008), p.343.

Google Scholar

[11] S. Mann, J. Webb and R.J.P. Williams: Biomineralization, Chemical and Biochemical Perspectives (VCH, Weinheim, 1989).

Google Scholar

[12] M. Fritz and D.E. Morse: Curr. Opin. Colloid Interface Sci. Vol. 3 (1998), p.55.

Google Scholar

[13] E. Dalas, P. Kiepetsanis and P.G. Koutsoukos: Langmuir Vol. 15 (1999), p.8322.

Google Scholar

[14] H. Colfen: Curr. Opin. Colloid Interface Sci. Vol. 8 (2003), p.23.

Google Scholar

[15] W. H. R. Shaw and J. J. Bordeaux: J. Am. Chem. Soc. Vol. 77 (1955), p.4729.

Google Scholar

[16] H. Wei, L. Wang, Y. Zhou, Y. Zhao, Z. Zhang, D. Wang, G. Xu and D. Xu: J. Phys. Chem. B Vol. 109 (2005), p.18342.

Google Scholar

[17] Q. Shen, L. Wang, Y. Huang, J. Sun, H. Wang, Y. Zhou and D. Wang: J. Phys. Chem. B Vol. 110 (2006), p.23148.

Google Scholar

[18] N. Loges, K. Graf, L. Nasdala and W. Tremel: Langmuir Vol. 22 (2006), p.3037.

Google Scholar

[19] A. Kotachi, T. Miura and H. Imai: Chem. Mater. Vol. 16 (2004), p.3191.

Google Scholar

[20] D. Liu and M.Z. Yates: Langmuir Vol. 22 (2006), p.5566.

Google Scholar

[21] S. Thachepan, M. Li, S.A. Davis and S. Mann: Chem. Mater. Vol. 18 (2006), p.3557.

Google Scholar

[22] S.F. Chen, S.H. Yu, J. Jiang, F. Li and Y. Liu: Chem. Mater. Vol. 18 (2006), p.115.

Google Scholar

[23] N. Gehrke, H. Colfen, N. Pinna, M. Antonietti and N. Nassif: Cryst. Growth Des. Vol. 5 (2005), 1317.

Google Scholar

[24] E. Leontidis, T. Kyprianidou-Leodidou, W. Caseri, P. Robyr, F. Krumeich and K.C. Kyriacou: J. Phys. Chem. B Vol. 105 (2001), p.4133.

DOI: 10.1021/jp0029966

Google Scholar

[25] E. Leontidis, T. Kyprianidou-Leodidou, W. Caseri and K.C. Kyriacou: Langmuir Vol. 15 (1999), p.3381.

DOI: 10.1021/la981587m

Google Scholar

[26] E.D. Goddard: Colloids Surf. Vol. 19 (1986), p.255.

Google Scholar

[27] S. Stoll and J. Buffle: J. Colloid Interf. Sci. Vol. 180 (1996), p.548.

Google Scholar

[28] J. Philip, T. Jaykumar, P. Kalyanasundaram, B. Raj and O. Mondain-Monval: Phys. Rev. Vol. 66 (011406) (Part 1) (2002), p.1406.

DOI: 10.1103/physreve.66.011406

Google Scholar

[29] K. Ballerat-Busserolles, L. Meunier, A.H. Roux and G. Roux-Desgranges : Phys. Chem. Chem. Phys. Vol. 3 (2001), p.2872.

DOI: 10.1039/b101931g

Google Scholar

[30] L.M. Qi, J. Li and J.M. Ma: Adv. Mater. Vol. 14 (2002), p.300.

Google Scholar

[31] S.G. Deng, J.M. Cao, J. Feng, J. Guo, B.Q. Fang, M.B. Zheng and J. Tao: J. Phys. Chem. B Vol. 109 (2005), p.11473.

Google Scholar

[32] X.X. Ji, G.Y. Li and X.T. Huang: Mater. Lett. Vol. 62 (2008) p.751.

Google Scholar

[33] E. Leontidis, T.K. Leodidou, W. Caseri, P. Robyr, F. Krumeich and K.C. Kyriacou: J. Phys. Chem., B Vol. 105 (2001), p.4133.

DOI: 10.1021/jp0029966

Google Scholar

[34] X.Y. Yang, X.L. Tan, G.Z. Cheng, H.Z. Yuan, S.Z. Mao, S. Zhao, J.Y. Yu, and Y.R. Du: J. Colloid Interface Sci. Vol. 279 (2004), p.533.

Google Scholar

[35] P. Dutta, S. Sen, S. Mukherjee and K. Bhattacharyya: Chem. Phys. Lett. Vol. 359 (2002), p.15.

Google Scholar

[36] Y. Pan, X. Zhao, Y.P. Guo, X.T. Lv, S.X. Ren, M.R. Yuan and Z.C. Wang: Mater. Leter. Vol. 61 (2007), p.2810.

Google Scholar