Magnetic-Field-Assisted Hydrothermal Growth of Manganese Dioxide Nanostructures and their Phase Transformation

Article Preview

Abstract:

MnO2 nanostructures were successfully synthesized by a magnetic-field-assisted hydrothermal approach. By applying a pulsed magnetic field to the reaction system, the crystal phase transformation progress of MnO2 at different temperature has been changed comparing to those synthesized without magnetic field. The effect of pulsed magnetic field on the growth of MnO2 was investigated by tracking the phase of the sample by using X-ray diffraction. It is found the pulsed magnetic field has an obvious effect on the nucleation and growth of MnO2 nanostructures and therefore influences the phase transformation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

148-152

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[2] M. M Thackeray: Prog. Solid State Chem. Vol. 25 (1997), p.1.

Google Scholar

[3] B. Ammundsen and J. Paulsen: Adv. Mater. Vol. 13 (2001), p.943.

Google Scholar

[4] Q. Feng, H. Kanoh and K. Ooj: J. Mater. Chem. Vol. 9 (1999), p.319.

Google Scholar

[5] S. Bach, M. Henry, N. Baffier and J. Livage: J. Solid State Chem. Vol. 88 (1990), p.325.

Google Scholar

[6] X. Wang and Y. D. Li: J. Am. Chem. Soc. Vol. 124 (2002), p.2880.

Google Scholar

[7] Y. Xiong, Y. Xie, Z. Li and C. Wu: Chem. Eur. J. Vol. 9 (2003), p.1645.

Google Scholar

[8] C.Z. Wu, Y. Xie, D. Wang, J. Yang and T.W. Li: J. Phys. Chem. B Vol. 107 (2003), p.13583.

Google Scholar

[9] B.X. Li, G.X. Rong, Y. Xie, L.F. Huang and C.Q. Feng: Inorg. Chem. Vol. 45 (2006), p.6404.

Google Scholar

H. Kawamura: J. Appl. Phys. Vol. 63 (1988), p.3086.

Google Scholar

[1] N. Yamamoto, T. Endo, M. Shimada and T. Takada: Jpn. J. Appl. Phys. Vol. 13 (1974), p.723.

Google Scholar

[2] M. Zhuang and J.W. Halley: Phys. Rev. B Vol. 64 (2001), p.024413.

Google Scholar

[3] H. Sato, K. Wakiya, T. Enoki, T. Kiyama, Y. Wakabayashi, H. Nakao and Y. Murakami: J. Phys. Soc. Jpn. Vol. 70 (2001), p.37.

Google Scholar

[4] Z.Z. Zhu, Y. Li, M.Y. Zhu, H.M. Jin, X.L. Deng and Z. Wang: Int. J. Mod. Phys. B Vol. 23 (2009), p.3608.

Google Scholar

[5] D.R. Uhlmann, T.P. Seward and B. Chalmers: Trans. Metall. Soc. Vol. 236 (1966), p.527.

Google Scholar

[6] Y. Kishida, K. Takeda, I. Miyoshino and E. Taleuchi: ISIJ Int. Vol. 30 (1990), p.34.

Google Scholar

[7] J. Wang, Q. Chen, C. Zeng and B. Hou: Adv. Mater. Vol. 16 (2004), p.137.

Google Scholar

[8] M.G. Mwaba, J. Gu and M.R. Golriz: J. Cryst. Growth Vol. 303 (2007), p.381.

Google Scholar

[9] Y.B. Xu, Z.M. Ren, G.H. Cao, W.L. Ren, K. Deng and Y.B. Zhong, Chem. Lett. Vol. 37 (2008), p.1200.

Google Scholar