Sputtering Phenomena of ZnS Nanomaterial by Impacting of High-Energy Electron in a Transmission Electron Microscope

Article Preview

Abstract:

An interesting sputtering phenomenon was shown when ZnS nanomaterial was irradiated by high-energy beams in a transmission electron microscope (TEM). Almost sputtered nanoparticles were spherical and well-dispersed. The sizes of deposited ZnS nanoparticles showed a good gradient distribution based on their distance away from the sputtering target. These nanoparticles had gradual changes in diameter from about 1 to 15 nm. This research may afford a simple and efficient method to prepare well-dispersed semiconductor nanocrystals in a small size range.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

272-276

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Zhang, X. Zhang, K. Zou, C. -S. Lee and S. -T. Lee, J. Am. Chem. Soc. 129 (2007) 3527 - 3532.

Google Scholar

[2] M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Science. 292 (2001) 1897-1899.

DOI: 10.1126/science.1060367

Google Scholar

[3] H. -M. Kim, Y. -H. Cho, H. Lee, S.I. Kim, S.R. Ryu, D.Y. Kim, T.W. Kang and K.S. Chung, Nano Lett. 4 (2004) 1059-1062.

Google Scholar

[4] M. Naito, K. Iwahori, A. Miura, M. Yamane, I. Yamashita, Angew. Chem. Int. Edit., 49 (2010) 7006-7009.

Google Scholar

[5] T. Kang, J. Sung, W. Shim, H. Moon, J. Cho, Y. Jo, W. Lee and B. Kim, J. Phy. Chem. C. 113 (2009) 5352-5357.

Google Scholar

[6] J.Y. Moon, H.S. Lee, Y.Y. Kim, H.K. Cho and H.S. Kim, Thin Solid Films. 518 (2009) 1230-1233.

Google Scholar

[7] T. Fujii, Y. Hishinuma, T. Mita and T. Arakawa, Solid State Commun. 149 (2009) 1799-1802.

Google Scholar

[8] W. Shim, J. Ham, K. -i. Lee, W.Y. Jeung, M. Johnson and W. Lee, Nano Lett. 9 (2008) 18-22.

Google Scholar

[9] J. -H. Shen, S. -W. Yeh, H. -L. Huang and D. Gan, Scripta Materialia. 61 (2009) 785-788.

Google Scholar

[10] S. Janbroers, T.R. de Kruijff, Q. Xu, P.J. Kooyman and H.W. Zandbergen, Ultramicroscopy. 109 (2009) 1105-1109.

DOI: 10.1016/j.ultramic.2009.04.001

Google Scholar

[11] C.J. Barrelet, Y. Wu, D.C. Bell and C.M. Lieber, J. Am. Chem. Soc. 125 (2003) 11498-11499.

Google Scholar

[12] T. Kubo, T. Isobe and M. Senna, J. Lumin. 99 (2002) 39-45.

Google Scholar

[13] Y. Jiang, X.M. Meng, J. Liu, Z.Y. Xie, C.S. Lee and S.T. Lee, Adv. Mater. 15 (2003) 323-327.

Google Scholar

[14] D.C. Harris, Infrared Phys. Techn. 39 (1998) 185-201.

Google Scholar

[15] Y.C. Zhu, Y. Bando, D.F. Xue and D. Golberg, Adv. Mater. 16 (2004) 831-834.

Google Scholar

[16] G.A. Khitrov and G.F. Strouse, J. Am. Chem. Soc. 125 (2003) 10465-10469.

Google Scholar

[17] Y. Zhao, Y. Zhang, H. Zhu, G.C. Hadjipanayis and J.Q. Xiao, J. Am. Chem. Soc. 126 (2004) 6874-6875.

Google Scholar

[18] S. Banerji, R.E. Byrne and S.E. Livingstone, Transition Met. Chem. 7 (1982) 5-10.

Google Scholar