Synthesis of Gold Nanoparticle/Silica Nanostructures

Article Preview

Abstract:

A novel approach is proposed to prepare organic-inorganic composite tubular structure by mineralizing silica and/or gold nanoparticle in the LbL assembled polypeptide multilayers films. Mesoporous silica (m-SiO2) and gold nanoparticle/mesoporous silica (Au NP/m-SiO2) tubes were prepared by subsequent calcination. The LbL assembled poly-L-lysine (PLL)/poly-L-tyrosine (PLT) multilayer film within the inner pores of polycarbonate templates acts as both a mineralizing agent and template for the formation of these materials. The as-prepared mesoporous SiO2 and Au NP/m-SiO2 tubes have well-defined structures. Gold nanoparticles with size smaller than 8 nm were immobilized in the silica network and the as-prepared Au NP/m-SiO2 tubes exhibit good catalytic activity towards the reduction of p-nitrophenol. This approach may provide a facile and general method to synthesize organic-inorganic and metal-oxide nanocomposites with different composition and structures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

321-325

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Hutchings: Catalysis Today Vol. 122 (2007), p.196.

Google Scholar

[2] M. Lagunas and C. Mendicute: Gold Bull., Vol. 40 (2007), p.2.

Google Scholar

[3] D.M. Dotzauer, J. Dai, L. Sun, and M.L. Bruening: Nano Lett., Vol. 6 (2006), p.2268.

Google Scholar

[4] D.G. Shchukin and H. Mohwald: Langmuir, Vol. 21 92005), p.5582.

Google Scholar

[5] J. Xie, J.Y. Lee, D.I.C. Wang, and Y.P. Ting: ACS Nano, Vol. 1 92007), p.429.

Google Scholar

[6] S.K. Bhargava, J.M. Booth, S. Agrawal, P. Coloe, and G. Kar: Langmuir, Vol. 21 (2005), p.5949.

Google Scholar

[7] E. Kharlampieva, J.M. Slocik, T. Tsukruk, R.R. Naik, and V.V. Tsukruk: Chem. Mater., Vol. 20 (2008), p.5822.

DOI: 10.1021/cm801475v

Google Scholar

[8] P.R. Selvakannan, A. Swami, D. Srisathiyanarayanan, P.S. Shirude, R. Pasricha, A.B. Mandale, and M. Sastry: Langmuir, Vol. 20 (2004), p.7825.

DOI: 10.1021/la049258j

Google Scholar

[9] F. Rodriguez, D. Glawe, R. Naik, K. Hallinan, and M. Stone: Biomacromolecules, Vol. 5 92004), p.261.

Google Scholar

[10] J.S. Jan, S. Lee, C.S. Carr, and D.F. Shantz: Chem. Mater., Vol. 17 (2005), p.4310.

Google Scholar

[11] K. Sano, T. Yamamoto, and A. Yamamoto: Bull. Chem. Soc. Japan, Vol. 57 (1984), p.2741.

Google Scholar

[12] W.H. Daly and D. Poch: Tetrahedron Lett., Vol. 29 (1988), p.5859.

Google Scholar

[13] T.J. Deming: Nature, Vol. 390 (1997), p.386.

Google Scholar

[14] T.J. Deming and S.A. Curtin: J. Am. Chem. Soc., Vol. 122 (2000), p.5710.

Google Scholar

[15] D. Ben-Ishai and A. Berger: J. Org. Chem., Vol. 17 (1952), p.1564.

Google Scholar

[16] S. Srivastava and N.A. Kotov: Accounts Chem. Res., Vol. 41 (2008), p.1831.

Google Scholar

[17] X. Peng and X. Kaplan: Langmuir, Vol. 21 (2005), p.24, (2005).

Google Scholar

[18] S. Wang, K. Qian, X.Z. Bi, and W. Huang: J. Phys. Chem. C, Vol. 113 (2009), p.6505.

Google Scholar

[19] K. Esumi, K. Miyamoto, and T. Yoshimura: J. colloid Interface Sci., Vol. 254 (2002), p.402.

Google Scholar

[20] K. Hayakawa, T. Yoshimura, and K. Esumi: Langmuir, Vol. 19 (2003), p.5517.

Google Scholar

[21] Y.C. Chang and D.H. Chen: J. Hazardous Mater., Vol. 165 (2009), p.664.

Google Scholar

[22] N. Pradhan, A. Pal, and T. Pal: Colloids and Surf. A: Physicochem. Eng. Asp., Vol. 196 (2002), p.247.

Google Scholar

[23] J. Lee, J.C. Park, J.U. Bang, and H. Song: Chem. Mater., Vol. 20 (2008), p.5839.

Google Scholar

[24] J. Lee, J.C. Park, and H. Song: Adv. Mater., Vol. 20 (2008), p.1523.

Google Scholar