Synthesis of Crystalline ZnSe Nanowires by Pulsed Laser Deposition for Application in Polymer-Inorganic Solar Cells

Article Preview

Abstract:

Crystalline ZnSe nanowires have been grown by pulsed-laser deposition on catalyst-coated substrates. On 300-400 °C catalyst-coated silicon (100) substrates, the crystalline ZnSe nanowires can be grown densely with the middle diameters about 40 nm, and the length about 400 nm . The as-grown nanowires were well crystalline and base-grown. They have potential applications in solar cell based on polymer/inorganic hybrid system for their properties of good electron-conductance and high ratio surface area. Based on the ZnSe nanowires cathode, a five-layer composite structure of polymer/inorganic hybrid solar cell has been designed. Before the growth of nanowires, a silver layer with a thickness of about 100 nm was deposited on the Si substrate as the back electrode and catalyst layer by the method of PLD. Then ZnSe nanowires were deposited on the Ag-coated substrate. Subsequently, poly (3-hexylthiophene) (P3HT) and PEDOT: PSS were spin-coated on the ZnSe nanowires. After that, a layer of Clevios PH1000 was also spin-coated on the composite sample as front electrode. At last, the solar cell was encapsulated with epoxy resin. Short circuit current about 0.44mA has been tentatively observed in this complex system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

314-320

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Cui, Q. Wei, H. Park and C. M. Lieber: Science 293 (2001), 1289.

Google Scholar

[2] X. Duan, Y. Huang, Y. Cui, J. Wang and C. M Lieber: Nature 409 (2001), 66.

Google Scholar

[3] M. Law, J. Goldberger, and P. Yang Annu: Rev. Mater. Sci. 34 (2004), 83.

Google Scholar

[4] C. H. Hsiao, S. J. Chang, S. B. Wang, S. P. Chang, T. C. Li, W. J. Lin, C. H. Ko, T. M. Kuan, and B. R. Huang: J. Ele. Che. Soc 156 (2009), 73.

Google Scholar

[5] X. T. Zhang, Z. Liu, Y. P. Leung, Q. Li and S. K. Hark: Appl. Phys. Lett. 84 (2004), 2641.

Google Scholar

[6] X. T. Zhang, Z. Liu, Y. P. Leung, Q. Li and S. K. Hark: Appl. Phys. Lett. 83 (2003), 5533.

Google Scholar

[7] Y. C. Zhu and Y. Bando: Chem. Phys. Lett. 377 (2003), 367.

Google Scholar

[8] B. Xiang, H. Z. Zhang, G. H. Li, F. H. Yang, F. H. Su, R. M. Wang, J. Xu, X. C. Lu, X. C. Sun, Q. Zhao, and D. P. Yu: Appl. Phys. Lett. 82 (2002), 3330.

Google Scholar

[9] Y. F. Chan, X. F. Duan, S. K. Chan, I. K. Sou, X. X. Zhang and N. Wang: Appl. Phys. Lett. 83 (2003), 2665.

Google Scholar

[10] R. Solanki, J. Huo and J. L Freeouf: Appl. Phys. Lett. 81 (2002), 3864.

Google Scholar

[11] Y. R. Ryu, S. Zhu, S. W. Han, H. W. White, P. F. Miceli, and H. R. Chandrasekhar: Appl. Surf. Sci. 127 (1998), 496.

Google Scholar

[12] J. W. Park, C. M. Rouleau, and D. H. Lowndes: J. Cryst. Growth 193 (1998), 516.

Google Scholar

[13] S. E. Shaheen, D. S. Ginley and G. E. Jabbour: MRS Bull. 30 (2005), 10.

Google Scholar

[14] L. Tsakalakos: Mater. Sci. Eng. R 62 (2008), 175.

Google Scholar

[15] K. Yu and J. Chen: Nanoscale Res. Lett. 4 (2009), 1.

Google Scholar

[16] K. Zhu, N. R. Neale, A. Miedaner, and A .J. Frank: Nano Lett. 7 (2007), 69.

Google Scholar

[17] M. W. Rowell, M. A. Topinka, M. D. McGehee, H. J. Prall, G. Dennler, N. S. Sariciftci, L. B. Hu, and G. Gruner: Appl. Phys. Lett. 88 (2006), 233506.

DOI: 10.1063/1.2209887

Google Scholar

[18] V. Sivakov, G. Andra, A. Gawlik, A. Berger, J. Plentz, F. Falk and S. H Christiansen: Nano Lett. 9 (2009), 1549.

Google Scholar

[19] K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee and J. Zhu: Small 1 (2005), 1062.

Google Scholar

[20] K. Wang, J. Chen, W. Zhou, Y. Zhang, Y. Yan, J. Pern, A. Mascarenhas Adv. Mater. 20 (2008), 3248.

Google Scholar

[21] E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldtand, G. Boschloo: J. Phys. Chem. B 110 (2006), 16159.

Google Scholar

[22] H. Bi and R. R. LaPierre: nanotechnology 20 (2009), 465205.

Google Scholar