Study on the Process Optimization of Synthesizing Co3O4 Nanoparticles by Homogeneous Precipitation Based on Support Vector Regression

Article Preview

Abstract:

The Co3O4 is the major raw material for fabricating lithium cobalt oxide electrode of lithium ion battery. According to the experimental dataset on grain diameter of Co3O4 nanoparticles synthesized by homogeneous precipitation under four main process parameters including the concentration of Co(NO3)2•6H2O solution, mole ratio of reactants, reaction temperature and reaction time, support vector regression (SVR) combined with particle swarm optimization (PSO) for its parameter optimization, is introduced to establish a model for estimating grain diameter of Co3O4 nanoparticles. The comparison of prediction results strongly support the prediction and generalization abilities of SVR are superior to those of multivariable gradual regression (MGR). Meanwhile, the index of grain diameter of Co3O4 nanoparticles under an independent combination of process parameters predicted by SVR model is more accurate than that by MGR model. The multi-factors analysis results based on SVR model are consistent with that of the literatures. This study suggests that SVR is a theoretical significance and potential practical value in development of smaller grain diameter of Co3O4 nanoparticles via guiding experiment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

211-219

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.Q. Liang, L.W. Liao, G.Q. Yin and M.Y. Zhang: Inorg. Chem. Ind. Vol. 38 (2006), p.21.

Google Scholar

[2] F. Huang, H. Zhan and Y.H. Zhou: Chin. J. Chem. Vol. 21 (2003), p.1275.

Google Scholar

[3] X.W. Lou, D. Deng, J.Y. Lee, J. Feng and L.A. Archer: Adv. Mater. Vol. 20 (2008), p.258.

Google Scholar

[4] Y. Liu and X.G. Zhang: Electrochim. Acta Vol. 54 (2009), p.4180.

Google Scholar

[5] Y. Wang, H. Xia, L. Lu and J.Y. Lin: ASC Nano Vol. 4 (2010), p.1425.

Google Scholar

[6] H.R. Park and S.D. Yoon: Solid-State Electron. Vol. 50 (2006), p.1291.

Google Scholar

[7] J. Zheng, J. Liu, D.P. Lv, Q. Kuang, Z.Y. Jiang, Z.X. Xie, R.B. Huang and L.S. Zheng: J. Solid State Chem. Vol. 183 (2010), p.600.

Google Scholar

[8] M.M. Rahman, J.Z. Wang, X.L. Deng, Y. Li and H.K. Liu: Electrochim. Acta Vol. 55 (2009), p.504.

Google Scholar

[9] R. Tsukamoto, M. Muraoka, Y. Fukushige, H. Nakagawa, T. Kawaguchi, Y. Nakatsuji and I. Yamashita: Bull. Chem. Soc. Jpn. Vol. 81 (2008), p.1669.

Google Scholar

[10] Y. Jiang, Y. Wu, B. Xie, Y. Xie and Y.T. Qian: Mater. Chem. Phys. Vol. 74 (2002), p.234.

Google Scholar

[11] J.T. Jiu, Y. Ge, X.N. Li and L. Nie: Mater. Lett. Vol. 54 (2002), p.260.

Google Scholar

[12] X.L. Deng, Y. Li, M.Y. Zhu, H.M. Jin, Z. Wang, Z.Z. Zhu and H.K. Liu: Int. J. Mod. Phys. B Vol. 23 (2009), p.3602.

Google Scholar

[13] S.H. Hong, J.S. Bae and H.J. Ahn: Met. Mater. Int. Vol. 14 (2008), p.229.

Google Scholar

[14] X.Y. Hou, J. Feng, X.H. Liu, J.P. Wang and M.L. Zhang: Chin. J. Inorg. Chem. Vol. 26 (2010), p.525.

Google Scholar

[15] V. Vapnik: The natural of statistical learning theory (Springer, New York 1995).

Google Scholar

[16] J. Kennedy and R. Eberhart: Proc. IEEE Int. Conf. Neural Networks Vol. 4 (1995), p. (1942).

Google Scholar

[17] Y.F. Wen, C.Z. Cai, X.H. Liu, J.F. Pei, X.J. Zhu and T.T. Xiao: Corros. Sci. Vol. 51 (2009), p.349.

Google Scholar

[18] C.Z. Cai, X.J. Zhu, Y.F. Wen, J.F. Pei and G.L. Wang: J. Supercond. Novel Magn. Vol. 23 (2010), p.737.

Google Scholar

[19] C.Z. Cai, W.L. Wang, L.Z. Sun and Y.Z. Chen: Math. Biosci. Vol. 185 (2003), p.111.

Google Scholar

[20] C.Z. Cai, L.Y. Han, Z.L. Ji, X. Chen and Y.Z. Chen: Nucleic Acids Res. Vol. 31 (2003), p.3692.

Google Scholar

[21] C.Z. Cai, G.L. Wang, Y.F. Wen, J.F. Pei, X.J. Zhu and W.P. Zhuang: J. Supercond. Novel Magn. Vol. 23 (2010), p.745.

Google Scholar

[22] T.D. Nguyen and T.O. Do: J. Phys. Chem. C Vol. 113 (2009), p.11204.

Google Scholar

[23] E.L. Salabas, A. Rumplecker, F. Kleitz, F. Radu and F. Schuth: Nano Letters Vol. 6 (2006), p.2977.

Google Scholar