Characterisation of CF/AL-MMC Manufactured by Means of Gas Pressure Infiltration

Article Preview

Abstract:

Constantly rising demands on extremely stressed lightweight structures, particularly in traffic engineering as well as in machine building and plant engineering, increasingly require the use of continuous fibre-reinforced composite materials. Due to their selectively adaptable characteristics profiles, they are clearly superior to conventional monolithic materials. Composites with textile reinforcement offer the highest flexibility for adaptation to reinforcing structures in to complex loading conditions. This study shows that the gas pressure infiltration technique was successfully assessed for manufacture of carbon fibre reinforced aluminium metal composites (CF/Al-MMCs), consisting of unidirectional as well as bidirectional Ni-coated carbon fibres with different Al-alloy matrix systems. As wail as investigating of the deformation and failure behaviour of CF/Al-MMCs, their thermo-physical properties, were determined such as the coefficient of thermal expansion. Furthermore, fractographic analysis and closer microscopic inspections indicate they fail with a brittle fracture.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

116-120

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Bhav Singh, B.; Balasubramanian, M.: Processing and properties of copper-coated carbon fibre reinforced aluminium alloy composites. Journal of Materials Processing Technology 209 (2009) 2104–2110

DOI: 10.1016/j.jmatprotec.2008.05.002

Google Scholar

[2] Chen, H.; Alpas, A.T.: Wear of aluminium matrix composites reinforced with nickel coated carbon fibres. Wear 192 (1996) 186-198

DOI: 10.1016/0043-1648(95)06795-7

Google Scholar

[3] Sobczak, N.; Kudyba, A.; Siewiorek, A.: Effect of oxidation and testing condition on wetting behaviour and interfaces in Al/Ni systems. International Conference Cast Composites 2009 (CC'2009), Kocierz, 49-50

Google Scholar

[4] Urena, A.; Rams, J.; Escalera, M.D.; Sanchez, M.: Effect of copper electroless coatings on the interaction between a molten Al–Si–Mg alloy and coated short carbon fibres. Composites: Part A 38 (2007) 1947–(1956)

DOI: 10.1016/j.compositesa.2007.02.005

Google Scholar

[5] Vijayaram, T. R.; Sulaiman, S.; Hamouda, A. M. S.; Ahmad, M. H. M.: Fabrication of fiber reinforced metal matrix composites by squeeze casting technology. Journal of Materials Processing Technology 178 (2006) 34–38

DOI: 10.1016/j.jmatprotec.2005.09.026

Google Scholar

[6] Sobczak, J.; Sobczak, N.; Asthana, R.; Wojciechowski, A.; Pietrzak, K.; Rudnik, D.: Atlas of cast metal-matrix composites structures. Published by Motor Transport Institute; Warsaw, and Foundry Research Institute; Cracow, (2007)

Google Scholar

[7] Sevik, H.; Can Kurnaz, S.: Properties of alumina particulate reinforced aluminium alloy produced by pressure die casting. Materials and Design 27 (2006) 676–683

DOI: 10.1016/j.matdes.2005.01.006

Google Scholar

[8] Ballmes, H.; Rottmair, C.A.; Singer, R.F.: Carbon long fibre reinforced Al-matrix composites by high pressure die casting. International Conference Cast Composites 2009 (CC'2009), Kocierz, 58-59

Google Scholar

[9] Demir, A.; Altinkok, N.: Effect of gas pressure infiltration on microstructure and bending strength of porous Al2O3/SiC-reinforced aluminium matrix composites. Composites Science and Technology 64 (2004) 2067–(2074)

DOI: 10.1016/j.compscitech.2004.02.015

Google Scholar

[10] Daoud, A.; Abou El-khair, M.T.: Wear and friction behaviour of sand cast brake rotor made of A359-20 vol % SiC particle composites sliding against automobile friction material. Tribology International 43 (2010) 544-553

DOI: 10.1016/j.triboint.2009.09.003

Google Scholar

[11] Hufenbach, W.; Gude, M.; Czulak, A.; Engelmann, F.; Boczkowska, A.: Textile-reinforced carbon fibre aluminium composites manufactured with gas pressure infiltration methods. International Conference Cast Composites 2009 (CC'2009), Kocierz, 56-57

Google Scholar

[12] Kozera, R.; Dolata-Grosz, A.; Sleziona, J; Dyzia, M.: Bielinski, J.; Broda, A.; Boczkowska, A.; Kurzydlowski, K. J.; Gude, M.; Czulak, A.; Engelmann, F.; Hufenbach, W.: Investigations of the interfaces between carbon fibres and an aluminium alloy matrix in composites fabricated by the pressure infiltration process. International Conference Cast Composites 2009 (CC'2009), Kocierz, 60-61

DOI: 10.4028/www.scientific.net/amr.264-265.1487

Google Scholar

[13] Dyzia, M.; Dolata-Grosz, A.; Śleziona, J.; Hufenbach, W.; Gude, M.; Czulak, A.: Infiltration Test Of Carbon Fibres Textile By Modified AlSi9Cu(Fe) Alloy. Composites 9 (2009) 3; 210-213

Google Scholar

[14] Sobczak, N.; Kudyba, A.; Siewiorek, A.; Sleziona, J.; Dolata-Grosz, A.; Dyzia, M.: Bielinski, J.; Kozera, R.; Boczkowska, A.; Kurzydlowski, K. J.; Ballmes, H.; Rottmair, C.A.; Singer, R.F.; Gude, M.; Czulak, A.; Engelmann, F.; Hufenbach, W.: Factors affecting wettability and infiltration of 3D Reinforcement with liquid Al-based matrix. International Conference Cast Composites 2009 (CC'2009), Kocierz, 62-63

Google Scholar

[15] Etter, T.; Schulz, P.; Weber, M.; Metzc, J.; Wimmler, M.; Löffler, J.F.; Uggowitzer, P.J.: Aluminium carbide formation in interpenetrating graphite/aluminium composites. Materials Science and Engineering A 448 (2007) 1-6

DOI: 10.1016/j.msea.2006.11.088

Google Scholar

[16] Kammer, C.: Aluminium Taschenbuch Band 1. Grundlagen und Werkstoffe (15. Auflage). Aluminium-Zentrale Düsseldorf (1998)

Google Scholar