Effects of Deposition Temperatures on the Nanoflakes Co(OH)2 Porous Films for Supercapacitors

Article Preview

Abstract:

Nanoflakes Co(OH)2 porous films were successfully synthesized by a facile electrochemical technique. The morphology was characterized by field emission scanning electron microscopy (FESEM). Electrochemical techniques such as cyclic voltammetry (CV), galvanostaitc charge/discharge and electrochemical impedance spectroscopy were used to study the effects of deposition temperatures on the capacitance of the films. The results exhibited that the Co(OH)2 films single electrode had high specific capacitance in KOH electrolyte. A maximum specific capacitance of 2780 F/g could be achieved for the Co(OH)2 film deposited at 50°C in 2 M aqueous KOH with 0 to 0.4V potential at a charge-discharge current density of 4 mA/cm2. Therefore, the obtained nanoflakes Co(OH)2 porous films can be a potential application electrode material for supercapacitors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

214-218

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. E. Conway: Electrochemical Supercapacitors (Plenum Press, New York 1999).

Google Scholar

[2] Y.G. Wang, H.Q. Li and Y.Y. Xia: Adv. Mater. Vol. 18 (2006), p.2619.

Google Scholar

[3] K.R. Prasad and N. Miura: Electrochem. Commun. Vol. 6 (2004), p.1004.

Google Scholar

[4] J.H. Jang, S.J. Han, T.W. Hyon and S.M. Oh: J. Power Sources Vol. 123 (2003), p.79.

Google Scholar

[5] W. Sugimoto, H. Iwata, Y. Yasunaga, Y. Murakami and Y. Takasu: Angew. Chem. Int. Ed. Vol. 42 (2003), p.4092.

Google Scholar

[6] W. Sugimoto, H. Iwata, K. Yokoshima, Y. Murakami and Y. Takasu: J. Phys. Chem. B Vol. 109 (2005), p.7330.

Google Scholar

[7] J.P. Zheng, P.J. Cygan and T.R. Jow: J. Electrochem. Soc. Vol. 142 (1995), p.2699.

Google Scholar

[8] E.E. Kalu, T.T. Nwoga, V. Srinivasan and J.W. Weidner: J. Power Sources Vol. 92 (2001), p.163.

Google Scholar

[9] K.C. Liu and M.A. Anderson: J. Electrochem. Soc. Vol. 143 (1996), p.124.

Google Scholar

[10] C. Lin, J.A. Ritter and B.N. Popov: J. Electrochem. Soc. Vol. 145 (1998), p.4097.

Google Scholar

[11] S.C. Pang, M.A. Anderson and T.W. Chapman: J. Electrochem. Soc. Vol. 147 (2000), p.444.

Google Scholar

[12] L. Cao, L.B. Kong, Y.Y. Liang and H.L. Li: Chem. Commun. Vol. 14 (2004), p.1646.

Google Scholar

[13] L. Cao, F. Xu, Y.Y. Liang and H.L. Li: Adv. Mater. Vol. 16 (2004), p.1853.

Google Scholar

[14] V. Gupta, T. Kusahara, H. Toyama, S. Gupta and N. Miura: Electrochem. Commun. Vol. 9 (2007), p.2315.

Google Scholar

[15] R.S. Jayashree and P.V. Kamath: J. Mater. Chem. Vol. 9 (1999), p.961.

Google Scholar

[16] P.A. Nelson, J.M. Elliott, G.S. Attard and J.R. Owen: Chem. Mater. Vol. 14 (2002), p.524.

Google Scholar

[17] T.W. Tan, S. Srinivasan and K.S. Choi: J. Am. Chem. Soc. Vol. 127 (2005), p.3596.

Google Scholar

[18] P.A. Nelson and J.R. Owen: J. Electrochem. Soc. Vol. 150 (2003), p. A1313.

Google Scholar

[19] X.F. Wang, Z. You and D.B. Ruan: Chin. J. Chem. Vol. 24 (2006), p.1126.

Google Scholar

[20] R. Kötz and M. Carlen: Electrochim. Acta Vol. 45 (2000), p.2483.

Google Scholar

[21] P. Kurzweil and H.J. Fischle: J. Power Sources Vol. 127 (2004), p.331.

Google Scholar

[22] J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque and M. Chesneau: J. Power Sources Vol. 101 (2001), p.109.

DOI: 10.1016/s0378-7753(01)00707-8

Google Scholar