A Novel Chemical Reduction Route towards the Synthesis of Nickel Nanoparticles at Room Temperature

Article Preview

Abstract:

Pure metallic nickel nanoparticles, spherical shape have been successfully synthesized by the chemical reduction of nickel chloride with hydrazine at room temperature without any protective agent and inert gas protection. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were employed to characterize the nickel nanoparticles and of course, the magnetic properties were also measured. This synthetic method is proven to be simple and very facile. And it’s very interesting that the obtained nickel nanoparticle can be isolated in solid states and stabilized for several months in atmosphere.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

293-297

Citation:

Online since:

July 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Lin, W.L. Zhou, A. Kumbhar et al: Journal of Solid State Chemistry Vol. 159(2001), pp.26-31.

Google Scholar

[2] P.G. Charles and J.P. Kathy: Nanoclusters Science Vol. 267(1995), pp.1338-1340.

Google Scholar

[3] M. Aslam, S. Li, and V.P. Dravid: Journal of the American Ceramic Society Vol. 90(2007), pp.950-956.

Google Scholar

[4] D.H. Chen and S.H. Wu: Chemistry of Materials Vol. 12(2000), pp.1354-1360.

Google Scholar

[5] J. Raabe, R. Pulwey and R. Sattler et al.: Journal of Applied Physics Vol. 88(2000), pp.4437-4439.

Google Scholar

[6] S. Ge, C. Li and X. Ma et al.: Journal of Applied Physics Vol. 90(2001), pp.509-511.

Google Scholar

[7] Y. Mizukoshi, K. Okitsu and Y. Maeda et al.: Journal of Physical Chemistry B Vol. 101 (1997), pp.7033-7037.

Google Scholar

[8] J.W. Park, E.H. Chae and S.H. Kim et al.: Materials Chemistry and Physics Vol. 97(2006), pp.371-378.

Google Scholar

[9] H. Bonnnmann, R.A. Brand and W. Brijoux et al.: Applied Organmetallic Chemistry Vol. 19 (2005), pp.790-795.

Google Scholar

[10] Y. Mizukoshi, K. Okitsu and Y. Maeda et al.: Journal of Physical Chemistry B, Vol. 101(1997), pp.7033-7037.

Google Scholar

[11] C.H. Griffiths, M.P. O'Horo and T.W. Smith: Journal of Applied Physics Vol. 50(1979), pp.7108-7115.

Google Scholar

[12] M. L. Steigerwald, A. P. Alivisatos and J. M. Gibson et al.: Journal of the American Chemical Society, Vol. 110 (1988), pp.3046-3050.

Google Scholar

[13] S. Komarneni, R. Pidugu and Q.H. Li et al. Journal of Material Research Vol. 10 (1995), pp.1687-1692.

Google Scholar

[14] G. N. Glavee, K.J. Klabunde and C.M. Sorensenet al.: Inorganic Chemistry, Vol. 34(1995), pp.28-35.

Google Scholar

[15] G.D. Forster, L.F. Barquin and R.L. Bilsborrow et al.: Journal of Materials Chemistry Vol. 9 (1999), pp.2537-2544.

Google Scholar

[16] J.Y. Shen, Z.Y. Li and Q.J. Yan et al.: Journal of Physical Chemistry Vol. 97(1993), pp.8504-8511.

Google Scholar

[17] G.N. Glavee, K.J. Klabunde and C.M. Sorensenet al.: Langmuir, Vol. 10 (1994), pp.4726-4730.

Google Scholar

[18] S. Wells, S.W. Charles and S. Morup et al.: Journal of Physics: Condensed Matterial Vol. 1 (1989), pp.8199-8208.

Google Scholar

[19] A.M.L. Jackelen, M. Jungbauer, and G.N. Glavee: Langmuir, Vol. 15(1999) P. 2322-2326.

Google Scholar

[20] Z.Y. Li, C.H. Han and J.Y. Shen: Journal of Materials Science Vol. 41(2006) pp.3473-3480.

Google Scholar

[21] S. -H. Wu, D. -H. Chen: Journal of Colloid and Interface Science Vol. 259 (2003), pp.282-286.

Google Scholar

[22] J.H. Hwang, V.P. Dravid and M.H. Teng et al.: Journal of Materials Research Vol. 12(1997), pp.1076-1082.

Google Scholar

[23] H.T. Zhang, G. Wu and X.H. Chen et al.: Materials Research Bulletin Vol. 41(2001), 495-501.

Google Scholar

[24] X.M. Ni, Q. B Zhao and H.G. Zheng et al.: European Journal of Inorganic Chemistry Vol. 23 (2005), pp.4788-4793.

Google Scholar

[25] K. V. P. M. Shafi and A. G. P. Balogh: Chemistry of Materials Vol. 10(1998), pp.3445-3450.

Google Scholar