Pressureless Sintering of Electro-Conductive Zirconia Composites

Article Preview

Abstract:

In the present work, 3 mol% Yttria-stabilized tetragonal zirconia (Y-TZP) composite containing 25 wt.% of zirconium diboride (ZrB2) was prepared via pressureless sintering method in an inert atmosphere over the temperature range of 1350-1550°C for one hour. The effect of zirconium diboride content in the zirconia matrix, as well as the sintering temperature on densification, phase stability and electrical properties of sintered samples have been studied. The results revealed that there was a significant increased in electrical conductivity of sintered samples when 25 wt.% of ZrB2 is incorporated into Y-TZP matrix.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

304-308

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.C. Garvie, R.H.J. Hannick and R.T. Pascoe: Nature Vol. 258 (1975) pp.703-704.

Google Scholar

[2] R. Stevens: Zirconia and Zirconia Ceramics (Magnesium Electron Ltd., UK., 1986) pp.28-43.

Google Scholar

[3] L. Gakovic, U.S. Patent 7, 214, 046 (2007).

Google Scholar

[4] C. Piconi, W. Burger, H.G. Richter, A. Cittadini, G. Maccauro, V. Covacci, N. Bruzzese, G.A. Ricci and E. Marmo: Biomaterials Vol. 19 (1998) pp.1489-1494.

DOI: 10.1016/s0142-9612(98)00064-7

Google Scholar

[5] S. Deville, J. Chevalier and L. Gremillard: Biomaterials Vol. 27 (2006) pp.2186-2192.

Google Scholar

[6] W. Konig, D. F. Dauw, G. Levy and U. Panten: Annals of the CIRP Vol. 37 (1988) pp.623-663.

Google Scholar

[7] G. Anne, S. Put, K. Vanmeensel, D. Jiang, J. Vleugels and O. Van Der Biest: J. Eur. Ceram. Soc. Vol. 25 (2005) pp.55-63.

Google Scholar

[8] J. Vleugels and O. Van Der Biest: J. Am. Ceram. Soc. Vol. 82 (1999) pp.2717-2720.

Google Scholar

[9] B. Basu, J. Vleugels and O. Van Der Biest: J. Alloys Comp. Vol. 334 (2002) pp.200-204.

Google Scholar

[10] B. Basu, J. Vleugels and O. Van Der Biest: Key Eng. Mater. (2002) pp.1177-1180.

Google Scholar

[11] ASTM E1876-97 (1998): STANDARD Test Method for Dynamic Young's Modulus, Shear Modulus and Poisson's Ratio by Impulse Excitation of Vibration, Annual Book of ASTM Standards.

DOI: 10.1520/e1876-22

Google Scholar

[12] S. Ramesh, S. Meenaloshini, C.Y. Tan, W.J. Kelvin Chew and W.D. Teng: Ceram. Inter. Vol. 34 (2008) pp.1603-1608.

Google Scholar

[13] N. Gupta, P. Mullick and B. Basu: J. Alloys Comp. Vol. 379 (2004) pp.228-232.

Google Scholar

[14] S. Ramesh and C. Gill: Ceram. Inter. Vol. 27 (2001) pp.705-711.

Google Scholar

[15] A. Mukhopadhyay, B. Basu, S. D. Bakshi and S. K. Mishra: Inter. J. Refractory Metals & Hard Materials Vol. 25 (2007) pp.179-188.

DOI: 10.1016/j.ijrmhm.2006.04.006

Google Scholar

[16] A.L. Chamberlain, W.G. Fahrenholtz and G.E. Hilmas: J. Am. Ceram. Soc. Vol. 89 (2006) pp.450-456.

Google Scholar

[17] S.D. Bakshi, B. Basu, S.K. Mishra: Composites Part A: Applied Science and Manufacturing Vol. 37 (2006) pp.2128-35.

Google Scholar

[18] F. Meschke, N. Claussan, G. De Port and J. Rodel: J. Eur. Ceram. Soc. Vol. 17 (1997) pp.843-850.

Google Scholar

[19] D. K. Chatterjee, G. S. Jarrold and S. K. Ghosh, U.S. Patent 5, 827, 470 (1998).

Google Scholar