Frabrication and Photoluminesence of ZnO Nanobelt with Superlength Nanocantilevers

Article Preview

Abstract:

ZnO nanobelts with ultralong nanocantilevers were synthesized by evaporating ZnO powders. The nanobelts have an average width of 200nm and thickness of 50nm. It grows along the direction, with±(2110) and±(0001)side surfaces. The growth direction of the nanocantilevers is along [0001], perpendicular to the (0001) side surface of the nanobelts and they have ultralong length, even to tens of micrometers. The growth mechanism and dynamics of the nanostructures are proposed. The surface polarization as an important factor for formed the growth of nanocantilevers. Because of the ultra-long nanocantilevers, this structure could be potentially useful as nanocantilever arrays for nanosensors and nanotweezers. The room-temperature photoluminescence of ZnO nanostructures is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

385-390

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. F. Duan, Y. Huang, R. Agarwal, C. M. Lieber, Nature Vol. 421(2003), pp.241-243.

Google Scholar

[2] J. C. Johnson, H. Q. Yan, R. D. Schaller, L. H. Haber, R. J. Saykally, P. D. Yang, J. Phys. Chem. B Vol. 105(2001), pp.211387-11389.

Google Scholar

[3] Guang Zhu, Rusen Yang, Sihong Wang, and Zhong Lin Wang. Nano Lett Vol. 10(2010), pp.4177-4178.

Google Scholar

[4] C. Ma, Y. Ding, X. D. Wang, Z. L. Wang, J. Am. Chem. Soc Vol. 126(2004), pp.708-710.

Google Scholar

[5] D. Moore, C. Ronning, C. Ma, Z. L. Wang, Appl. Phys. Letts Vol. 385(2004), pp.8-10.

Google Scholar

[6] J. P. Ge, Y. D. Li, Adv. Funct. Mater Vol. 14(2004), pp.2-4.

Google Scholar

[7] C. S. Lao, P. X. Gao, R. S. Yang, Y. Dai, Z. L. Wang, Chem. Phys. Lett Vol. 417(2005), pp.359-363.

Google Scholar

[8] Z. L. Wang. Mater. Sci. Eng. R Vol. 64(2009), pp.33-37.

Google Scholar

[9] X. Y. Kong, Y. Ding, R. S. Yang, Z. L. Wang, Science Vol. 303(2004), pp.1348-1349.

Google Scholar

[10] X. D. Wang, J. H. Song, Z. L. Wang, Chem. Phys. Lett Vol. 424(2006), pp.86-89.

Google Scholar

[11] P. X. Gao, Y. Ding, W. Mai, W. L. Hughes, C. S. Lao, Z. L. Wang, Science Vol. 309(2005), pp.1700-1703.

Google Scholar

[12] P. X. Gao, C. S. Lao, Y. Ding, Z. L. Wang, Adv. Funct. Mater Vol. 16(2006), pp.53-55.

Google Scholar

[13] G. Y. Chen, T. Thundat, E. A. Wachter, R. A. Warmack, J. Appl. Phys Vol. 77(1995), pp.3618-3619.

Google Scholar

[14] J. Fritz, M.K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. J. Guntherodt, C. Gerber, J. K. Gimzewski, Science Vol. 288(2000), pp.316-318.

DOI: 10.1126/science.288.5464.316

Google Scholar

[15] W. L. Hughes, Z. L. Wang, Appl. Phys. Lett Vol. 82(2003), pp.2886-2887.

Google Scholar

[16] Yu dong Gu, Jun Zhou , Wenjie Mai , Ying Dai , Gang Bao , Zhong Lin Wang , Chem. Phys. Lett Vol. 484(2010), pp.96-99.

Google Scholar

[17] Z. W. Pan, Z. R. Dai, Z. L. Wang, Science Vol. 291(2001), p.1947-(1949).

Google Scholar

[18] H. Q. Yan, R. R. He, J. Johnson, M. Law, R. J. Saykally, P. D. Yang, J. Am. Chem. Soc Vol. 125(2003), pp.4728-4730.

Google Scholar

[19] Z. L. Wang, X. Y. Kong, J. M. Zuo, Phys. Rev. Lett Vol. 91(2003), pp.185502-185503.

Google Scholar

[20] H. W. Seo, S. Y. Bae, J. Park, Appl. Phys. Lett Vol. 82(2003), pp.3752-3754.

Google Scholar

[21] J. M. Vohs, M. A. Barteau, Surf. Sci Vol. 221(1989), pp.590-593.

Google Scholar

[22] M. H. Huang, Y. Y. Wu, H. N. Feick, N. Tran, E. Weber, P. D. Yang, Adv. Mater Vol. 13(2001), pp.13-16.

Google Scholar

[23] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, B. E. Grade, J. Appl. Phys Vol. 79(1996), pp.7983-7985.

Google Scholar