Temperature Induced Morphology Transformation of ZnO under Hydrothermal Condition

Article Preview

Abstract:

ZnO nanostructures with different morphology were successfully prepared via a hexamethylendiamine-assisted hydrothermal synthesis route by only adjusting reaction temperature. The prepared ZnO samples were characterized by powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and high resolution TEM (HRTEM). Results indicated that uniform flake-like ZnO nanoparticles with a similar thickness of about 70 nm and flower-like ZnO nanostructures assembled by prism-like nanorods were prepared at 120 °C and 180 °C, respectively. Possible mechanisms for the formation of ZnO with different morphologies were discussed. The photocatalytic properties of the as-prepared flake-like ZnO nanoparticles and flower-like ZnO nanostructures were studied.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

559-564

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z.W. Pan, Z.R. Dai, Z.L. Wang, Science Vol. 291 (2001), p.1947-(1949).

Google Scholar

[2] D.G. Thomas, J. Phys. Chem. Solid Vol. 15 (1960), pp.86-96.

Google Scholar

[3] M. Yoshimoto, S. Takagi, Y. Umemura, M. Hada, H. Nakastuji, J. Catal. Vol. 173 (1998), pp.53-63.

Google Scholar

[4] B. O'Regan, D.T. Schwarthz, S.M. Zakeeruddin, M. Gratzel, Adv. Mater. Vol. 12 (2000), pp.1263-1267.

Google Scholar

[5] M.H. Huang, S. Mao, P. Yang, etc. Science Vol. 292 (2001), pp.1897-1899.

Google Scholar

[6] Q. Wan, Q.H. Li, C.L. Lin, etc. Appl. Phys. Lett. Vol. 84 (2004), pp.3654-3656.

Google Scholar

[7] L. Shen, H. Zhang, S.W. Guo , Mater. Chem. Phys. Vol. 114 (2009), pp.580-583.

Google Scholar

[8] T.H. Vlasenflin, M. Tanaka, Solid State Commun. Vol. 142 (2007), pp.292-294.

Google Scholar

[9] X.Q. Wei, B.Y. Man, M. Liu, C.S. Xue, H.Z. Zhuang, C. Yang, Phys. B Vol. 388 (2007), pp.145-152.

Google Scholar

[10] N.S. Ramgir, D.J. Late, K. Vijayamohanan, etc. J. Phys. Chem. B Vol. 110 (2006), pp.18236-18242.

Google Scholar

[11] R.J. Lanf, W.D. Bond, Am. Ceram. Soc. Bull. Vol. 63 (1984), p.278.

Google Scholar

[12] Y.H. Ni, W.G. Wu, X.W. Wei, etc. Mater. Res. Bull. Vol. 43 (2008), pp.2919-2928.

Google Scholar

[13] P.W. Tonto, O. Mekasuwandumrong, P. Praserthdam Ceram, etc. International Vol. 34 (2008), pp.57-62.

Google Scholar

[14] P. Li, H. Liu, F.X. Xu, Y. Wei, Mater. Chem. Phys. Vol. 112 (2008), pp.393-397.

Google Scholar

[15] L.L. Wang, X.T. Zhang, C.L. Shao, Q. Qiao, Y.C. Liu, Mater. Chem. Phys. Vol. 115 (2009), pp.547-550.

Google Scholar

[16] W. Bai, K. Yu, Y. Sun, etc. Physica E Vol. 40 (2008), pp.822-827.

Google Scholar

[17] L.W. Li, H. Watanabe, M. Fuji, M. Taskahashi, Adv. Powder Technol., Vol. 20 (2009), pp.185-189.

Google Scholar

[18] S.P. Garcia, S. Semancik, Chem. Mater. Vol. 19 (2007), pp.4016-4022.

Google Scholar