Fabrication of α-Fe2O3 Nanowires by Thermal Oxidation Method

Article Preview

Abstract:

A large area of hematite (α-Fe2O3) nanowires has been successfully synthesized by thermal oxidation of iron foil in an atmosphere environment. The effects on the growth of nanowires have been systematically studied by adjusting the oxidizing environment as well as the reacting temperature and annealing time. The samples were characterized by scanning electron microscope (SEM), x-ray diffraction (XRD) and micro-Raman spectroscopy. Optimum condition was obtained by annealing sample at 600°C for four hours in oxygen-poor environment. Nanowires with dense, high aspect ratio and sharp tips were observed. The average diameter and length of the nanowires was 80 nm and 5μm, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

79-84

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Dieckmann: Philos. Mag. A Vol. 68. (1993), p.725.

Google Scholar

[2] H. H. Kung, Transition Metal Oxides: Surface Chemistry and Catalysis(Elsevier, New York, 1989).

Google Scholar

[3] L. Huo, W. Li, H. Cui, S. Xi, J. Wang, B. Zhao, Y. Shen, and Z. Lu: Chem. Mater. Vol. 12. (2000), p.790.

Google Scholar

[4] P.T. Moseley, et al: Sensors and Actuators B Vol. 133 (2008), p.543–546.

Google Scholar

[5] M. Fukazawa, H. Matuzaki, and K. Hara: Sens. Actuators B Vol. 12. (1993), p.133.

Google Scholar

[6] K. K. Lepers: Vestn. Akad. Nauk SSSR Vol. 4. (1990), p.26.

Google Scholar

[7] T. Lindgren, H. Wang, N. Beermann, L. Vayssieres, A. Hagfeldt, and S. -E. Lindquist: Solar Energy Mater. Solar Cells Vol. 71. (2002), p.231.

DOI: 10.1016/s0927-0248(01)00062-9

Google Scholar

[8] G. Bate and E. D. Wohlforth, Ferromagnetic Material (North-Holland, Amsterdam, The Netherlands , 1980).

Google Scholar

[9] R. M. Cornell and U. Schwertmann, The Iron Oxides, Structure, Properties, Reactions, Occurence and Uses, VCH, Weinhein, (1996).

Google Scholar

[10] R. Takagi: J. Phys. Soc. Jpn. Vol. 12, (1957), pp.1212-1218.

Google Scholar

[11] A. G. Goursat and W. W. Smeltzer: Oxid. Met. Vol. 6. (1973), p.101.

Google Scholar

[12] Y. Fu, J. Chen, and H. Zhang: Chem. Phys. Lett. Vol. 350. (2001), p.491.

Google Scholar

[13] S. Lian, E. Wang, Z. Kang, Y. Bai, L. Gao, N. Jing, C. Hu, and L. Xu: Solid State Commun. Vol. 129. (2004), p.485.

Google Scholar

[14] Y. Y. Fu, R. M. Wang, J. Xu, J. Chen, Y. Yan, A. V. Narlikar, and H. Zhang: Chem. Phys. Lett. Vol. 379, (2003)pp.373-379.

Google Scholar

[15] X. Wen, S. Wang, Y. Ding, Z. L. Wang, and S. Yang: J. Phys. Chem. B Vol. 109. (2005), pp.215-220.

Google Scholar

[16] H. Srivastava, P. Tiwari, A. K. Srivastava, andR. V. Nandedkar:J. Appl. Phys Vol. 102. (2007), p.054303.

Google Scholar

[17] U. Cvelbar, Z. Chen, M. K. Sunkara and M. Mozeti : Small Vol. 4. (2008), p.1610.

Google Scholar

[18] L. -C. Hsu, Y. -Y. Li and C. -Y. Hsiao: Nanoscale Res. Lett Vol. 3. (2008), p.330.

Google Scholar

[19] Q. Han, Y. Y. Xu, Y. Y. Fu, H. Zhang, R. M. Wang, T. M. Wang and Z. Y. Chen: Chem. Phys. Lett Vol. 431. (2006) , p.100.

Google Scholar

[20] I.R. Beattie, T.R. Gilson: J. Chem. Soc A Vol. 5. (1983), p.980.

Google Scholar

[21] D. Zhao,P. Kashkarov and Han Zhang: Nanoscale Vol. 2. (2010), pp.524-528.

Google Scholar