High-Yield Synthesis of Bamboo-Like BN Nanotubes Using Self-Propagation High Temperature Synthesized Porous Precursor

Article Preview

Abstract:

High-yield and high-purity bamboo-like boron nitride nanotubes were synthesized via an effective chemical vapor deposition method by annealing porous precursor under ammonia atmosphere at 1150 °C. The porous precursor, prepared by self-propagation high temperature synthesis method, was the key to bulk synthesis process. The as-synthesized boron nitride nanotubes were characterized by SEM, TEM, HRTEM, XRD, Raman and FTIR spectroscopy. These nanotubes had a bamboo-like structure with uniform diameters about 90 nm and length of more than 10 μm. The associated growth model is proposed in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-63

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Wen, T. Zhang, X.X. Huang, B. Zhong, X.D. Zhang, H.M. Yu, Synthesis of bulk quantity BN nanotubes with uniform morphology, Scripta, Mater. Vol. 62(2010), pp.25-28.

DOI: 10.1016/j.scriptamat.2009.09.018

Google Scholar

[2] D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C.C. Tang, C.Y. Zhi, Boron nitride nanotubes and nanosheets, ACS Nano. Vol. 4(2010), pp.2979-2993.

DOI: 10.1021/nn1006495

Google Scholar

[3] J.S. Wang, C.H. Lee, Y. K. Yap, Recent advancements in boron nitride nanotubes, Nanoscale Vol. 2(2010), p.2028-(2034).

DOI: 10.1039/c0nr00335b

Google Scholar

[4] C. Zhi, Y. Bando, C.C. Tang, D. Golberg, Immobilization of proteins on boron nitride nanotubes, J. Am. Chem. Soc. Vol. 127(2005), pp.17144-17145.

DOI: 10.1021/ja055989+

Google Scholar

[5] C.C. Tang, Y. Bando, C.H. Liu, S.S. Fan, J. Zhang, X.X. Ding, D. Golberg, Thermal conductivity of nanostructured boron nitride materials, J. Phys. Chem. B Vol. 110(2006), pp.10354-10357.

DOI: 10.1021/jp0607014

Google Scholar

[6] L.T. Chaddertona, Y. Chen, A model for the growth of bamboo and skeletal nanotubes: catalytic capillarity, J. Cryst. Growth Vol. 240(2002), pp.164-169.

DOI: 10.1016/s0022-0248(02)00855-2

Google Scholar

[7] H.C. Choi, S.Y. Bae, W.S. Jang, J. Park, H.J. Song, H.J. Shin, X-ray absorption near edge structure study of BN nanotubes and nanothorns, J. Phys. Chem. B Vol. 109(2005), pp.7007-7011.

DOI: 10.1021/jp0464425

Google Scholar

[8] H. Chen, Y. Chen, C.P. Li, H.Z. Zhang, J.S. Williams, Y. Liu, Z.W. Liu, S.P. Ringer, Eu-doped boron nitride nanotubes as a nanometer-sized visible-light source, Adv. Mater. Vol. 19(2007), pp.1845-1848.

DOI: 10.1002/adma.200700493

Google Scholar

[9] R. Ma, Y. Bando, T. Sato: Controlled synthesis of BN nanotubes, nanobamboos, and nanocables, Adv. Mater. Vol. 14(2002), pp.366-368.

DOI: 10.1002/1521-4095(20020304)14:5<366::aid-adma366>3.0.co;2-q

Google Scholar

[10] C.Y. Su, Z.Y. Juang, K.F. Chen, B.M. Cheng, F.R. Chen, K.C. Leou, C.H. Tsai, Selective growth of boron nitride nanotubes by the plasma-assisted and iron-catalytic CVD methods, J. Phys. Chem. C Vol. 113(2009), pp.14681-14688.

DOI: 10.1021/jp904402h

Google Scholar

[11] R. Arenal, A.C. Ferrari, S. Reich, L. Wirtz, S. Lefrand, A. Rubio, A. Loiseau, Raman spectroscopy of single-wall boron nitride nanotubes, Nano. Lett. Vol. 6(2006), pp.1812-1816.

DOI: 10.1021/nl0602544

Google Scholar

[12] Y.L. Gu, M.T. Zheng, Y.L. Liu, Z.L. Xu, Low-Temperature Synthesis and Growth of Hexagonal Boron-Nitride in a Lithium Bromide Melt, J. Am. Ceram. Soc. Vol. 90(2007), pp.1589-1591.

DOI: 10.1111/j.1551-2916.2007.01551.x

Google Scholar

[13] R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth, Appl. Phys. Lett. Vol. 4(1964), pp.89-90.

DOI: 10.1063/1.1753975

Google Scholar