Structure Study of Nanocrystalline O-LiMnO2

Article Preview

Abstract:

The nanocrystalline orthorhombic LiMnO2 was successfully synthesized with the raw materials of MnO2, Mn (CH3COO)2 and LiOH by hydrothermal synthesis method, which has the properties of small size, less stacking faults and single phase. High resolution electron microscopy images show that along the b axis of the orthogonal LiMnO2, MnO6 and LiO6 octahedron arrange alternately and regularly. The orthorhombic LiMnO2 is proved to be p-type semiconductor by the Hall test. XPS tests indicate that the trivalent Mn in the o-LiMnO2 is in the high-spin state. And the magnetic study shows that there is reentrant spin glass behavior in o-LiMnO2. The contrast study of Raman spectroscopy and magnetic susceptibility shows that the characteristic mode softening of structural phase transition corresponds to the magnetic phase transition temperature, indicating a possible interaction between phonons and spin.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

42-48

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.D. Johnston and R. R. Heikes: J. Amer. Chem. Soc. Vol. 78 (1956), p.3255.

Google Scholar

[2] V. R. Hoppe, G. Brachtel and M. Jansen: Z. Anorg. Allg. Chem. Vol. 417 (1975), p.1.

Google Scholar

[3] L. Croguennec, P. Deniard, R. Brec et al.: J. Mater. Chem. Vol. 5(11) (1995), p. (1919).

Google Scholar

[4] A. R. Armstrong and P. G. Bruce: Nature Vol. 381(1996), p.499.

Google Scholar

[5] S-T. Myung, S. Komaba and N. Kumagai: Electrochimica Acta Vol. 47 (2002), p.3287.

Google Scholar

[6] Q. Liu, D.L. Mao, C. K. Chang et al.: J. Power Sources Vol. 173 (2007), p.538.

Google Scholar

[7] F. Zhou, X. M. Zhao, Y. Q. Liu et al.: J. Phys. Chem. Solids Vol. 69 (2008), p. (2061).

Google Scholar

[8] E. M. Jin, B. Jin, Y. S. Jeon et al.: J. Power Sources Vol. 189 (2009), p.620.

Google Scholar

[9] S. T. Myung, S. Komaba and N. Kumagai: Solid State Ionics Vol. 150 (2002), p.199.

Google Scholar

[10] J. M. Kim and H. T. Chung: J. Power Sources Vol. 115 (2003), p.125.

Google Scholar

[11] Y.S. Lee, Y.K. Sun, K. Adachi et al.: Electrochimica Acta Vol. 48 (2003), p.1031.

Google Scholar

[12] Y. I. Jang, F. C. Chou, B. Y. Huang et al.: J. Phys. Chem. Solids Vol. 64 (2003), p.2525.

Google Scholar

[13] L. Croguennec, P. Deniard, R. Brec et al.: Solid State Ionics Vol. 89 (1996), p.127.

Google Scholar

[14] M. Q. Wu, A. Chen, R.Q. Xu et al.: Microelectronic Engineering Vol. 66 (2003), p.180.

Google Scholar

[15] X-D. Li, W-S. Yang, S-C. Zhang et al.: Solid State Ionics Vol. 176 (2005), p.803.

Google Scholar

[16] L. Croguennec, P. Deniard, R. Brec et al.: J. Mater. Chem. Vol. 7(3) (1997), p.511.

Google Scholar

[17] B.R. Strohmeier and D.M. Hercules: J. Phys. Chem. Vol. 88 (1984), p.4922.

Google Scholar

[18] R. N. Bhowmik and R. Ranganathan: J. Appl. Phys. Vol. 93(5) (2003), p.2780.

Google Scholar

[19] R. S. Freitas, L. Ghivelder, F. Damay et al.: Pyhs. Rev. B Vol. 64 (2001), p.144404.

Google Scholar

[20] L. Z. Zhao, G. Chen, F. Y. Li et al.: Acta Physica Sinica Vol. 56(10) (2007), p.6045.

Google Scholar

[21] J. E. Greedan, N. P. Raju, A. Maignan et al.: Pyhs. Rev. B Vol. 54 (1996), p.7189.

Google Scholar

[22] C. A. Cardoso, F. M. Araujo-Moreira,. P. S. Awana et al.: Pyhs. Rev. B Vol. 67 (2003), p.020407(R).

Google Scholar

[23] G. X. Cheng: Raman Brillouin Scattering(Pekin science press, 2003, p.226), in Chinese.

Google Scholar

[24] L.Z. Zhao, Y.W. Chen and G.R. Wang: Solid State Ionics Vol. 181 (2010), p.1399.

Google Scholar